I hate LaTeX

This commit is contained in:
Daniel Knüttel 2020-03-05 14:23:00 +01:00
parent 650d73ccca
commit 1a1c63bf26
3 changed files with 87 additions and 1 deletions

View File

@ -2,16 +2,21 @@ latex=xelatex
pdflatex=xelatex pdflatex=xelatex
bibtex=bibtex bibtex=bibtex
graph_pngs= graphs/valid_graph.png
all: main.pdf all: main.pdf
main.pdf: main.tex #main.bib $(cover) $(chapters) main.pdf: main.tex $(graph_pngs)
$(latex) main $(latex) main
#$(bibtex) main #$(bibtex) main
$(latex) main $(latex) main
$(pdflatex) main $(pdflatex) main
graphs/%.png: graphs/%.dot
dot $< -Tpng -o $@
clean: clean:
-rm main.aux -rm main.aux
@ -22,3 +27,4 @@ clean:
-rm main.pdf -rm main.pdf
-rm main.toc -rm main.toc
-rm main.bbl -rm main.bbl
-rm $(graph_pngs)

View File

@ -0,0 +1,8 @@
graph default
{
0 -- 1 -- 2
1 -- 4 -- 2
0 -- 2 -- 5
6 -- 7 -- 8
3
}

View File

@ -13,6 +13,7 @@
%\usepackage{struktex} %\usepackage{struktex}
\usepackage{qcircuit} \usepackage{qcircuit}
\usepackage{adjustbox} \usepackage{adjustbox}
\usepackage{tikz}
\usetheme{metropolis} \usetheme{metropolis}
@ -500,4 +501,75 @@
\end{frame} \end{frame}
} }
\section{Graphical Description of Stabilizer States}
{
\begin{frame}{Graphs}
\begin{itemize}
\item{\textbf{Definition}
{\itshape
The tuple $(V, E)$ is called a graph iff $V$ is a set of vertices with $|V| = n \in \mathbb{N}$ elements.
In the following $V = \{0, ..., n-1\}$ will be used.
$E$ is the set of edges $E \subset \left\{\{i, j\} \middle| i,j \in V, i \neq j\right\}$.
}}
\item{
Example for a valid graph:\\
\includegraphics[width=\linewidth,height=0.5\textheight,keepaspectratio]{graphs/valid_graph.png}
}
\end{itemize}
\end{frame}
}
{
\begin{frame}{ VOP-free Graph States}
\begin{itemize}
\item{\textbf{Definition}
{\itshape
For $G = (V,E)$, $i \in V$ define
\begin{equation}
K_G^{(i)} := X_i \prod\limits_{\{i,j\} \in E} Z_j
\end{equation}
the stabilizers associated with the graph $G$.
}}
\item{
The state stabilized by all $K_G^{(i)}$ is
\begin{equation}
\ket{\bar{G}} = \prod\limits_{\{i,j\} \in E} CZ_{i,j} \ket{+}.
\end{equation}
This state is called vertex operator-free (VOP-free) graph state.
}
\item{
Applying a $CZ_{i,j}$ gate toggles the edge $\{i,j\}$ in $E$.
}
\end{itemize}
\end{frame}
}
{
\begin{frame}{Dynamics of VOP-free Graph States}
\begin{itemize}
\item{
For $a \in V$ the transformation
\begin{equation}
M_a := \sqrt{-iX_i} \prod\limits_{\{i,j\} \in E} \sqrt{iZ_j}
\end{equation}
toggles the neighbourhood $n_a := \left\{ j \middle| \{a,j\} \in E\right\}$
of a.
}
\item{
Many Clifford operations cannot be described by the VOP-free graph states.\\
Example:
\begin{equation}
G = \left(\{0, 1\}, \{\}\right)
%\ket{\bar{G}} &= \ket{+}\\
%U &= H_0H_1 \\
%U \ket{\bar{G}} &= \ket{\mbox{0b}00}\\
\end{equation}
}
\end{itemize}
\end{frame}
}
\end{document} \end{document}