diff --git a/presentation/Makefile b/presentation/Makefile index 6edcd91..5942e41 100644 --- a/presentation/Makefile +++ b/presentation/Makefile @@ -2,16 +2,21 @@ latex=xelatex pdflatex=xelatex bibtex=bibtex +graph_pngs= graphs/valid_graph.png + + all: main.pdf -main.pdf: main.tex #main.bib $(cover) $(chapters) +main.pdf: main.tex $(graph_pngs) $(latex) main #$(bibtex) main $(latex) main $(pdflatex) main +graphs/%.png: graphs/%.dot + dot $< -Tpng -o $@ clean: -rm main.aux @@ -22,3 +27,4 @@ clean: -rm main.pdf -rm main.toc -rm main.bbl + -rm $(graph_pngs) diff --git a/presentation/graphs/valid_graph.dot b/presentation/graphs/valid_graph.dot new file mode 100644 index 0000000..004df18 --- /dev/null +++ b/presentation/graphs/valid_graph.dot @@ -0,0 +1,8 @@ +graph default +{ + 0 -- 1 -- 2 + 1 -- 4 -- 2 + 0 -- 2 -- 5 + 6 -- 7 -- 8 + 3 +} diff --git a/presentation/main.tex b/presentation/main.tex index 7fab365..2bd91e5 100644 --- a/presentation/main.tex +++ b/presentation/main.tex @@ -13,6 +13,7 @@ %\usepackage{struktex} \usepackage{qcircuit} \usepackage{adjustbox} +\usepackage{tikz} \usetheme{metropolis} @@ -500,4 +501,75 @@ \end{frame} } +\section{Graphical Description of Stabilizer States} + +{ +\begin{frame}{Graphs} + \begin{itemize} + \item{\textbf{Definition} + {\itshape + The tuple $(V, E)$ is called a graph iff $V$ is a set of vertices with $|V| = n \in \mathbb{N}$ elements. + In the following $V = \{0, ..., n-1\}$ will be used. + $E$ is the set of edges $E \subset \left\{\{i, j\} \middle| i,j \in V, i \neq j\right\}$. + }} + \item{ + Example for a valid graph:\\ + \includegraphics[width=\linewidth,height=0.5\textheight,keepaspectratio]{graphs/valid_graph.png} + } + \end{itemize} + +\end{frame} +} + +{ +\begin{frame}{ VOP-free Graph States} + \begin{itemize} + \item{\textbf{Definition} + {\itshape + For $G = (V,E)$, $i \in V$ define + \begin{equation} + K_G^{(i)} := X_i \prod\limits_{\{i,j\} \in E} Z_j + \end{equation} + the stabilizers associated with the graph $G$. + }} + \item{ + The state stabilized by all $K_G^{(i)}$ is + \begin{equation} + \ket{\bar{G}} = \prod\limits_{\{i,j\} \in E} CZ_{i,j} \ket{+}. + \end{equation} + This state is called vertex operator-free (VOP-free) graph state. + } + \item{ + Applying a $CZ_{i,j}$ gate toggles the edge $\{i,j\}$ in $E$. + } + \end{itemize} +\end{frame} +} + +{ +\begin{frame}{Dynamics of VOP-free Graph States} + \begin{itemize} + \item{ + For $a \in V$ the transformation + \begin{equation} + M_a := \sqrt{-iX_i} \prod\limits_{\{i,j\} \in E} \sqrt{iZ_j} + \end{equation} + toggles the neighbourhood $n_a := \left\{ j \middle| \{a,j\} \in E\right\}$ + of a. + } + \item{ + Many Clifford operations cannot be described by the VOP-free graph states.\\ + Example: + \begin{equation} + G = \left(\{0, 1\}, \{\}\right) + %\ket{\bar{G}} &= \ket{+}\\ + %U &= H_0H_1 \\ + %U \ket{\bar{G}} &= \ket{\mbox{0b}00}\\ + \end{equation} + + + } + \end{itemize} +\end{frame} +} \end{document}