some changes proposed by Andreas
This commit is contained in:
parent
0c735905f1
commit
650d73ccca
|
@ -9,7 +9,7 @@
|
|||
$ \{\ket{\uparrow} \equiv \ket{1}, \ket{\downarrow} \equiv \ket{0}\} $
|
||||
with $\braket{\uparrow}{\downarrow} = 0$. In the following this basis will be called
|
||||
the $Z$ basis in analogy to the conventions used in spin systems ($\sigma_Z$). For some computations
|
||||
it can be useful to have component vectors, $\ket{\uparrow} \equiv \left(\begin{array}{c} 0 \\ 1\end{array} \right)$ and
|
||||
it can be useful to have component vectors; $\ket{\uparrow} \equiv \left(\begin{array}{c} 0 \\ 1\end{array} \right)$ and
|
||||
$\ket{\downarrow} \equiv \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$
|
||||
are used in these cases.
|
||||
\end{definition}
|
||||
|
@ -17,7 +17,7 @@
|
|||
A gate acting on a qbit is a unitary operator $G \in SU(2)$. One can show that
|
||||
$\forall G \in SU(2)$ $G$ can be approximated arbitrarily good as a product of unitary generator matrices
|
||||
\cite[Chapter 4.3]{kaye_ea2007}\cite[Chapter 2]{marquezino_ea_2019};
|
||||
common choices for the generators are $ X, H, R_{\phi}$ and $Z, H, R_{\phi}$ with
|
||||
common choices for the generators are $ X, H, R_{\phi}$ or $Z, H, R_{\phi}$ with
|
||||
\label{ref:singleqbitgates}
|
||||
|
||||
\begin{equation}
|
||||
|
@ -26,19 +26,19 @@ common choices for the generators are $ X, H, R_{\phi}$ and $Z, H, R_{\phi}$ wit
|
|||
& Z := \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right) \\
|
||||
& H := \frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1\end{array}\right) \\
|
||||
& R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right)\\
|
||||
& I := \left(\begin{array}{cc} 1 & 0 \\ 0 & 1\end{array}\right) \\
|
||||
& I := \left(\begin{array}{cc} 1 & 0 \\ 0 & 1\end{array}\right). \\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
Note that $X = HZH$ and $Z = R_{\pi}$, so the set of $H, R_\phi$ is sufficient.
|
||||
Further note that the basis vectors are chosen s.t. $Z\ket{0} = +\ket{0}$ and $Z\ket{1} = -\ket{1}$;
|
||||
transforming to the other Pauli eigenstates is done using $H$ and $SH$:
|
||||
transforming to the other Pauli eigenstates is done using $H$ and $SH$
|
||||
|
||||
\begin{equation}
|
||||
S := R_{\frac{\pi}{2}} = \left(\begin{array}{cc} 1 & 0 \\ 0 & i\end{array}\right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
S H Z H^\dagger S^\dagger = S X S^\dagger = Y
|
||||
S H Z H^\dagger S^\dagger = S X S^\dagger = Y.
|
||||
\end{equation}
|
||||
|
||||
The following states are the $\pm 1$ eigenstates of the $X,Y,Z$ operators
|
||||
|
@ -59,12 +59,12 @@ and will be used in some calculations later:
|
|||
\label{ref:many_qbits}
|
||||
|
||||
\begin{postulate}
|
||||
A $n$-qbit quantum mechanical state is the tensor product \cite[Definition 14.3]{wuest1995} of the $n$ one-qbit
|
||||
states.
|
||||
A $n$-qbit quantum mechanical state is the tensor product of the $n$ one-qbit
|
||||
states \cite[Postulate 4]{nielsen_chuang_2010}.
|
||||
\end{postulate}
|
||||
|
||||
Let $\ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ and $\ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$
|
||||
be the basis of the one-qbit systems. Then two-qbit basis states are:
|
||||
be the basis of the one-qbit systems. Then two-qbit basis states are
|
||||
|
||||
\begin{equation}
|
||||
\ket{0} := \ket{0b00} := \ket{0}_s \otimes \ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right)
|
||||
|
@ -76,21 +76,21 @@ be the basis of the one-qbit systems. Then two-qbit basis states are:
|
|||
\ket{2} := \ket{0b10} := \ket{1}_s \otimes \ket{0}_s := \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} \right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\ket{3} := \ket{0b11} := \ket{1}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right)
|
||||
\ket{3} := \ket{0b11} := \ket{1}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right).
|
||||
\end{equation}
|
||||
|
||||
The $n$-qbit basis states can be constructed in a similar manner.
|
||||
A general $n$-qbit state can then be written as a superposition of the
|
||||
integer states:
|
||||
A general $n$-qbit state is now a superposition of the
|
||||
integer states
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:ci}
|
||||
\ket{\psi} = \sum\limits_{i = 0}^{2^n - 1} c_i \ket{i}
|
||||
\ket{\psi} = \sum\limits_{i = 0}^{2^n - 1} c_i \ket{i} .
|
||||
\end{equation}
|
||||
|
||||
With the normation condition:
|
||||
with the normation condition
|
||||
\begin{equation}
|
||||
\sum\limits_{i = 0}^{2^n - 1} |c_i|^2 = 1
|
||||
\sum\limits_{i = 0}^{2^n - 1} |c_i|^2 = 1.
|
||||
\end{equation}
|
||||
|
||||
The states $\ket{i}$ for $i = 0, ..., 2^{n}-1$ are called integer states. Note
|
||||
|
@ -133,12 +133,12 @@ is acting on qbit $j$.
|
|||
|
||||
where without loss of generality $j < i$; the other case is analogous.
|
||||
|
||||
In particular for $X, Z$:
|
||||
In particular for $X, Z$
|
||||
\begin{equation}\label{eq:CX_pr}
|
||||
CX(i, j) = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes X_i
|
||||
\end{equation}
|
||||
\begin{equation}\label{eq:CZ_pr}
|
||||
CZ(i, j) = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes Z_i
|
||||
CZ(i, j) = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes Z_i .
|
||||
\end{equation}
|
||||
|
||||
\end{definition}
|
||||
|
@ -148,13 +148,13 @@ $CU$ applies the gate $U$ to the act-qbit if the control-qbit is in its $\ket{1}
|
|||
|
||||
One can show that the gates in \ref{ref:singleqbitgates} together with an entanglement gate, such as $CX$ or $CZ$ are enough
|
||||
to generate an arbitrary $n$-qbit gate \cite[Chapter 4.3]{kaye_ea2007}\cite{barenco_ea_1995}.
|
||||
The matrix representation of $CX$ and $CZ$ for two qbits is given by:
|
||||
The matrix representation of $CX$ and $CZ$ for two qbits is given by
|
||||
|
||||
\begin{equation}
|
||||
CX_{1, 0} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{array}\right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
CZ_{1, 0} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -1 \end{array}\right)
|
||||
CZ_{1, 0} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -1 \end{array}\right).
|
||||
\end{equation}
|
||||
|
||||
\subsubsection{Measurements}
|
||||
|
@ -181,13 +181,13 @@ $i$ $Z_i$ is measured. The $+1$ eigenvalue of $Z_i$ is $\ket{0}_i$, $\ket{1}_i$
|
|||
\end{corrolary}
|
||||
|
||||
\begin{proof}
|
||||
The measuerment in not injective: Measuring both
|
||||
The measuerment is not injective: Measuring both
|
||||
$\ket{0}$ and $\frac{1}{\sqrt{2}}(\ket{0} + \ket{1})$ (can) map to $\ket{0}$.
|
||||
|
||||
Any unitary matrix $U$ has the inverse $U^\dagger \equiv U^{-1}$.
|
||||
\end{proof}
|
||||
|
||||
Because a measurement is not unitary it is not a gate in the sense the definition above.
|
||||
Because a measurement is not unitary it is not a gate in the sense of the definition above.
|
||||
In the following discussion the term \textit{measurement gate} will be used from time
|
||||
to time as a measurement can be treated similarely while doing numerics.
|
||||
|
||||
|
@ -196,27 +196,27 @@ to time as a measurement can be treated similarely while doing numerics.
|
|||
|
||||
As mentioned in \ref{ref:many_qbits} one can approximate an arbitrary $n$-qbit
|
||||
gate $U$ as a product of some single-qbit gates and either $CX$ or $CZ$.
|
||||
Writing (possibly huge) products of matrices is quite unpractical and very much
|
||||
Writing (possibly huge) products of matrices is quite unpractical and
|
||||
unreadable. To address this problem quantum circuits have been introduced.
|
||||
These represent the qbits as a horizontal line and a gate acting on a qbit is
|
||||
a box with a name on the respective line. Quantum circuits are read from
|
||||
left to right. This means that a gate $U_i = Z_i X_i H_i$ has the
|
||||
circuit representation:
|
||||
circuit representation
|
||||
|
||||
\[
|
||||
\Qcircuit @C=1em @R=.7em {
|
||||
& \gate{H} & \gate{X} & \gate{Z} &\qw \\
|
||||
}
|
||||
}.
|
||||
\]
|
||||
|
||||
The controlled gates (such as $CX$ and $CZ$) have a vertical line from the control-qbit to
|
||||
the gate, for instance the circuit for $CZ_{2, 1}CX_{2,0}$ is:
|
||||
the gate, for instance the circuit for $CZ_{2, 1}CX_{2,0}$ is
|
||||
|
||||
\[
|
||||
\Qcircuit @C=1em @R=.7em {
|
||||
& \qw & \ctrl{2} & \qw & \qw &\qw \\
|
||||
& \qw & \qw & \qw & \ctrl{1} &\qw \\
|
||||
& \qw & \gate{X} & \qw & \gate{Z} &\qw \\
|
||||
& \qw & \gate{X} & \qw & \gate{Z} &\qw &\rstick{.}\\
|
||||
}
|
||||
\]
|
||||
|
||||
|
@ -241,12 +241,12 @@ algorithm that can be used to analyze the spectrum of the transfer matrix:
|
|||
T = \exp(itH)
|
||||
\end{equation}
|
||||
|
||||
The eigenvalue of $T$ can now be estimated by using the phase estimation circuit:
|
||||
The eigenvalue of $T$ can now be estimated by using the phase estimation circuit
|
||||
|
||||
\[
|
||||
\Qcircuit @C=1em @R=.7em {
|
||||
& \lstick{\ket{0}} & {/^N} \qw & \gate{H^{\otimes n}} & \ctrl{1} & \gate{FT^\dagger} & \qw & \meter & \rstick{x}\\
|
||||
& \lstick{\ket{\varphi}} & {/} \qw & \qw & \gate{T} & \qw & {/} \qw & \qw& \rstick{\ket{\varphi}} \\
|
||||
& \lstick{\ket{\varphi}} & {/} \qw & \qw & \gate{T} & \qw & {/} \qw & \qw& \rstick{\ket{\varphi}.} \\
|
||||
}
|
||||
\]
|
||||
|
||||
|
|
|
@ -18,10 +18,10 @@ performance has since been improved to $n\log(n)$ time on average \cite{andersbr
|
|||
|
||||
\begin{definition}
|
||||
\begin{equation}
|
||||
P := \{\pm 1, \pm i\} \cdot \{I, X, Y, Z\}
|
||||
P := \{\pm I, \pm X, \pm Y, \pm Z, \pm iI, \pm iX, \pm iY, \pm iZ\}
|
||||
\end{equation}
|
||||
|
||||
Is called the Pauli group.
|
||||
with the matrix product is called the Pauli group \cite{andersbriegel2005}.
|
||||
\end{definition}
|
||||
|
||||
The group property of $P$ can be verified easily. Note that
|
||||
|
@ -34,7 +34,7 @@ the elements of $P$ either commute or anticommute.
|
|||
P_n := \left\{\bigotimes\limits_{i=0}^{n-1} p_i \middle| p_i \in P\right\}
|
||||
\end{equation}
|
||||
|
||||
is called the multilocal Pauli group on $n$ qbits.
|
||||
is called the multilocal Pauli group on $n$ qbits \cite{andersbriegel2005}.
|
||||
\end{definition}
|
||||
|
||||
The group property of $P_n$ and the (anti-)commutator relationships follow directly from its definition
|
||||
|
@ -44,13 +44,15 @@ via the tensor product.
|
|||
|
||||
\subsubsection{Stabilizers}
|
||||
|
||||
The discussion below follows the argumentation given in \cite{nielsen_chuang_2010}.
|
||||
|
||||
\begin{definition}
|
||||
\label{def:stabilizer}
|
||||
An abelian subgroup $S = \{S^{(0)}, ..., S^{(N)}\}$ of $P_n$ is called a set of stabilizers iff
|
||||
\begin{enumerate}
|
||||
\item{$\forall i,j = 1, ..., N$: $[S^{(i)}, S^{(j)}] = 0$%: $S^{(i)}$ and $S^{(j)}$ commute
|
||||
}
|
||||
\item{$-I \notin S$}
|
||||
\item{$-I \notin S$ }
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
|
||||
|
@ -61,7 +63,7 @@ via the tensor product.
|
|||
\begin{enumerate}
|
||||
\item{$\pm iI \notin S$}
|
||||
\item{$(S^{(i)})^2 = I$ for all $i$}
|
||||
\item{$S^{(i)}$ are hermitian for all $i$}
|
||||
\item{$S^{(i)}$ are hermitian for all $i$ }
|
||||
\end{enumerate}
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
|
@ -71,7 +73,7 @@ via the tensor product.
|
|||
\item{From the definition of $S$ ($G_n$ respectively) follows that any
|
||||
$S^{(i)} \in S$ has the form $\pm i^l \left(\bigotimes\limits_{j=0}^{n-1} \tilde{p}_j\right)$ where
|
||||
$\tilde{p}_j \in \{X, Y, Z, I\}$ and $l \in \{0, 1\}$. As $\left(\bigotimes\limits_{j=0}^{n-1} \tilde{p}_j\right)$
|
||||
is hermitian $(S^{(i)})^2$ is either $+I$ or $-I$. As $-I \notin S$ $(S^{(i)})^2 = I$ follows directly.
|
||||
is hermitian and unitary $(S^{(i)})^2$ is either $+I$ or $-I$. As $-I \notin S$ $(S^{(i)})^2 = I$ follows directly.
|
||||
}
|
||||
\item{Following the argumentation above $\left(S^{(i)}\right)^2 = -I \Leftrightarrow l=1$
|
||||
therefore $\left(S^{(i)}\right)^2 = -I \Leftrightarrow \left(S^{(i)}\right)^\dagger \neq S^{(i)}$.}
|
||||
|
@ -113,7 +115,7 @@ can be diagonalized simultaneously. This motivates and justifies the following d
|
|||
\end{equation}
|
||||
|
||||
is called the space of stabilizer states associated with $S$ and one says
|
||||
$\ket{\psi}$ is stabilized by $S$.
|
||||
$\ket{\psi}$ is stabilized by $S$ \cite{nielsen_chuang_2010}.
|
||||
\end{definition}
|
||||
|
||||
It is clear that to show the stabilization property of
|
||||
|
@ -121,13 +123,13 @@ $S$ the proof for the generators is sufficient,
|
|||
as all the generators forming an element in $S$ can be absorbed into $\ket{\psi}$.
|
||||
The dimension of $V_S$ is not immediately clear. One can however show that
|
||||
for a set of stabilizers $\langle S^{(i)} \rangle_{i=1, ..., n-m}$ the dimension
|
||||
$dim V_S = 2^m$ \cite[Chapter 10.5]{nielsen_chuang_2010}. This yields the following important
|
||||
$\dim V_S = 2^m$ \cite[Chapter 10.5]{nielsen_chuang_2010}. This yields the following important
|
||||
result:
|
||||
|
||||
\begin{theorem}
|
||||
\label{thm:unique_s_state}
|
||||
For a $n$ qbit system and stabilizers $S = \langle S^{(i)} \rangle_{i=1, ..., n}$ the stabilizer
|
||||
space $V_S$ has $dim V_S = 1$, in particular there exists an up to a trivial phase unique
|
||||
space $V_S$ has $\dim V_S = 1$, in particular there exists an up to a trivial phase unique
|
||||
state $\ket{\psi}$ that is stabilized by $S$.
|
||||
|
||||
Without proof.
|
||||
|
@ -147,7 +149,7 @@ and a unitary transformation $U$ that describes the dynamics of the system, i.e.
|
|||
\end{equation}
|
||||
|
||||
It is clear that in general $\ket{\psi'}$ will not be stabilized by $S$ anymore. There are
|
||||
however some statements that can still be made:
|
||||
however some statements that can still be made \cite{nielsen_chuang_2010}:
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
|
@ -169,7 +171,7 @@ $U$ but there exists a group for which $S'$ will be a set of stabilizers.
|
|||
C_n := \left\{U \in SU(2^n) \middle| \forall p \in P_n: UpU^\dagger \in P_n \right\}
|
||||
\end{equation}
|
||||
|
||||
is called the Clifford group. $C_1 =: C_L$ is called the local Clifford group.
|
||||
is called the Clifford group. $C_1 =: C_L$ is called the local Clifford group \cite{andersbriegel2005}.
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
|
@ -212,10 +214,10 @@ product of $n$ Pauli matrices. This has led to the simulation using stabilizer t
|
|||
|
||||
Interestingly also measurements are dynamics covered by the stabilizers.
|
||||
When an observable $g_a \in \{\pm X_a, \pm Y_a, \pm Z_a\}$ acting on qbit $a$ is measured
|
||||
one has to consider the projector:
|
||||
one has to consider the projector
|
||||
|
||||
\begin{equation}
|
||||
P_{g_a,s} = \frac{I + (-1)^s g_a}{2}
|
||||
P_{g_a,s} = \frac{I + (-1)^s g_a}{2}.
|
||||
\end{equation}
|
||||
|
||||
If now $g_a$ commutes with all $S^{(i)}$ a result of $s=0$ is measured with probability $1$
|
||||
|
@ -230,19 +232,20 @@ and the stabilizers are left unchanged:
|
|||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
As the state that is stabilized by $S$ is unique $\ket{\psi'} = \ket{\psi}$.
|
||||
As the state that is stabilized by $S$ is unique $\ket{\psi'} = \ket{\psi}$ \cite{nielsen_chuang_2010}.
|
||||
|
||||
If $g_a$ does not commute with all stabilizers the following lemma gives
|
||||
the result of the measurement.
|
||||
|
||||
\begin{lemma}
|
||||
\label{lemma:stab_measurement}
|
||||
Let $J := \left\{ S^{(i)} \middle| [g_a, S^{(i)}] \neq 0\right\} \neq \{\}$. When measuring
|
||||
Let $J := \left\{ S^{(i)} \middle| [g_a, S^{(i)}] \neq 0\right\} \neq \{\}$ and
|
||||
$J^c := \left\{S^{(i)} \middle| S^{(i)} \notin J \right\}$. When measuring
|
||||
$\frac{I + (-1)^s g_a}{2} $
|
||||
$s=1$ and $s=0$ are obtained with probability $\frac{1}{2}$ and after choosing
|
||||
a $j \in J$ the new state $\ket{\psi'}$ is stabilized by
|
||||
a $j \in J$ the new state $\ket{\psi'}$ is stabilized by \cite{nielsen_chuang_2010}
|
||||
\begin{equation}
|
||||
\langle \{(-1)^s g_a\} \cup \left\{S^{(i)} S^{(j)} \middle| S^{(i)} \in J \setminus \{S^{(j)}\} \right\} \cup J^c\rangle
|
||||
\langle \{(-1)^s g_a\} \cup \left\{S^{(i)} S^{(j)} \middle| S^{(i)} \in J \setminus \{S^{(j)}\} \right\} \cup J^c \rangle.
|
||||
\end{equation}
|
||||
\end{lemma}
|
||||
|
||||
|
@ -276,7 +279,7 @@ the result of the measurement.
|
|||
\end{equation}
|
||||
|
||||
The state after measurement is stabilized by $S^{(j)}S^{(i)}$ $i,j \in J$, and by
|
||||
$S^{(i)} \in J^c$. $(-1)^sg_a$ trivially stabilizes $\ket{\psi'}$.
|
||||
$S^{(i)} \in J^c$. $(-1)^sg_a$ trivially stabilizes $\ket{\psi'}$ \cite{nielsen_chuang_2010}.
|
||||
\end{proof}
|
||||
|
||||
\subsection{The VOP-free Graph States}
|
||||
|
@ -287,17 +290,17 @@ vertex operator-free will be clear in the following section about graph states.
|
|||
|
||||
\begin{definition}
|
||||
\label{def:graph}
|
||||
The tuple $(V, E)$ is called a graph iff $V$ is a set of vertices with $|V| = n \in \mathbb{N}$.
|
||||
The tuple $(V, E)$ is called a graph iff $V$ is a set of vertices with $|V| = n \in \mathbb{N}$ elements.
|
||||
In the following $V = \{0, ..., n-1\}$ will be used.
|
||||
$E$ is the set of edges $E = \left\{\{i, j\} \middle| i,j \in V, i \neq j\right\}$.
|
||||
$E$ is the set of edges $E \subset \left\{\{i, j\} \middle| i,j \in V, i \neq j\right\}$.
|
||||
|
||||
For a vertex $i$ $n_i := \left\{j \in V \middle| \{i, j\} \in E\right\}$ is called the neighbourhood
|
||||
of $i$.
|
||||
of $i$ \cite{hein_eisert_briegel2008}.
|
||||
\end{definition}
|
||||
|
||||
This definition of a graph is way less general than the definition of a mathematical graph.
|
||||
This definition of a graph is way less general than the definition of a graph in graph theory.
|
||||
Using this definition will however allow to avoid an extensive list of constraints on the
|
||||
mathematical graph that are implied in this definition.
|
||||
graph from graph theory that are implied in this definition.
|
||||
|
||||
\begin{definition}
|
||||
For a graph $G = (V = \{0, ..., n-1\}, E)$ the associated stabilizers are
|
||||
|
@ -305,7 +308,7 @@ mathematical graph that are implied in this definition.
|
|||
K_G^{(i)} := X_i \prod\limits_{\{i,j\} \in E} Z_j
|
||||
\end{equation}
|
||||
for all $i \in V$. The vertex operator free graph state $\ket{\bar{G}}$ is the state stabilized by
|
||||
$\langle K_G^{(i)} \rangle_{i = 0, ..., n-1}$.
|
||||
$\langle K_G^{(i)} \rangle_{i = 0, ..., n-1}$ \cite{hein_eisert_briegel2008}.
|
||||
\end{definition}
|
||||
|
||||
It is clear that the $K_G^{(i)}$ are multilocal Pauli operators. That they commute
|
||||
|
@ -321,16 +324,19 @@ from the graph.
|
|||
|
||||
\begin{lemma}
|
||||
For a graph $G = (V, E)$ the associated state $\ket{\bar{G}}$ is
|
||||
constructed using
|
||||
constructed using \cite{hein_eisert_briegel2008}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\ket{\bar{G}} &= \left(\prod\limits_{\{i,j\} \in E} CZ_{i,j}\right)\left(\prod\limits_{i \in V} H_i\right) \ket{0} \\
|
||||
&= \left(\prod\limits_{\{i,j\} \in E} CZ_{i,j}\right) \ket{+} \\
|
||||
&= \left(\prod\limits_{\{i,j\} \in E} CZ_{i,j}\right) \ket{+} .\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
FIXME: This
|
||||
|
||||
|
||||
Let $\ket{+} := \left(\prod\limits_{l \in V} H_l\right) \ket{0}$ as before.
|
||||
Note that for any $X_i$: $X_i \ket{+} = +1 \ket{+}$.
|
||||
In the following discussion the direction $\prod\limits_{\{l,k\} \in E} := \prod\limits_{\{l,k\} \in E, l < k}$
|
||||
|
@ -374,28 +380,28 @@ is done by using the symmetric set difference:
|
|||
|
||||
\begin{definition}
|
||||
For two finite sets $A,B$ the symmetric set difference $\Delta$ is
|
||||
defined as:
|
||||
defined as \cite{hein_eisert_briegel2008}
|
||||
|
||||
\begin{equation}
|
||||
A \Delta B = (A \cup B) \setminus (A \cap B)
|
||||
A \Delta B = (A \cup B) \setminus (A \cap B).
|
||||
\end{equation}
|
||||
\end{definition}
|
||||
|
||||
Toggling an edge $\{i, j\}$ updates $E' = E \Delta \left\{\{i,j\}\right\}$.
|
||||
Another transformation on the VOP-free graph states for a vertex $a \in V$ is:
|
||||
Another transformation on the VOP-free graph states for a vertex $a \in V$ is \cite{andersbriegel2005}
|
||||
|
||||
\begin{equation}
|
||||
M_a := \sqrt{-iX_a} \prod\limits_{j\in n_a} \sqrt{iZ_j}
|
||||
M_a := \sqrt{-iX_a} \prod\limits_{j\in n_a} \sqrt{iZ_j}.
|
||||
\end{equation}
|
||||
|
||||
This transformation toggles the neighbourhood of $a$ which is an operation
|
||||
that will be used later.
|
||||
that will be used later\cite{andersbriegel2005}.
|
||||
|
||||
\begin{lemma}
|
||||
\label{lemma:M_a}
|
||||
When applying $M_a$ to a state $\ket{\bar{G}}$ the new state
|
||||
$\ket{\bar{G}'}$ is again a VOP-free graph state and the
|
||||
graph is updated according to:
|
||||
graph is updated according to\cite{andersbriegel2005}:
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
n_a' &= n_a \\
|
||||
|
@ -489,7 +495,7 @@ clear that both $C_L$ and $CZ$ can be applied to a general graph state.
|
|||
+1 \ket{G} = \left(\prod\limits_{j=1}^no_j\right) K_G^{(i)} \left(\prod\limits_{j=1}^no_j\right)^\dagger \ket{G}
|
||||
\end{equation}
|
||||
|
||||
$o_i$ are called the vertex operators of $\ket{G}$.
|
||||
$o_i$ are called the vertex operators of $\ket{G}$ \cite{andersbriegel2005}.
|
||||
\end{definition}
|
||||
|
||||
Recalling the dynamics of stabilizer states the following relation follows immediately:
|
||||
|
@ -499,16 +505,16 @@ Recalling the dynamics of stabilizer states the following relation follows immed
|
|||
\end{equation}
|
||||
|
||||
The great advantage of this representation of a stabilizer state is its space requirement:
|
||||
Instead of storing $n^2$ $P_1$ matrices only some vertices (which often are implicit),
|
||||
Instead of storing $n^2$ $P$ matrices only some vertices (which often are implicit),
|
||||
the edges and some vertex operators ($n$ matrices) have to be stored. The following theorem
|
||||
will improve this even further: instead of $n$ matrices it is sufficient to store $n$ integers
|
||||
representing the vertex operators:
|
||||
|
||||
\begin{theorem}
|
||||
$C_L$ has $24$ degrees of freedom.
|
||||
$C_L$ has $24$ degrees of freedom \cite{andersbriegel2005}.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
It is clear that $\forall a \in C_L$ a is a group isomorphism $P_1 \circlearrowleft$: $apa^\dagger a p' a^\dagger = a pp'a^\dagger$.
|
||||
It is clear that $\forall a \in C_L$ a is a group isomorphism $P \rightarrow P$: $apa^\dagger a p' a^\dagger = a pp'a^\dagger$.
|
||||
Therefore $a$ will preserve the (anti-)commutator relations of $P$.
|
||||
Further note that $Y = iXZ$, so one has to consider the anti-commutator relations
|
||||
of $X,Z$ only.
|
||||
|
@ -521,7 +527,7 @@ representing the vertex operators:
|
|||
|
||||
From now on $C_L = \langle H, S \rangle$ (disregarding a global phase) will be used.
|
||||
One can show (by construction) that $H, S$ generate a possible choice of $C_L$, as is
|
||||
$C_L = \langle \sqrt{-iX}, \sqrt{-iZ}\rangle$ which is required in one specific operation on graph states.
|
||||
$C_L = \langle \sqrt{-iX}, \sqrt{-iZ}\rangle$ which is required in one specific operation on graph states \cite{andersbriegel2005}.
|
||||
|
||||
\begin{equation}
|
||||
S = \left(\begin{array}{cc} 1 & 0 \\ 0 & i \end{array}\right)
|
||||
|
@ -541,12 +547,12 @@ basically a stabilizer tableaux that might require less memory than the tableaux
|
|||
CHP. The true power of this formalism is seen when studying its dynamics. The simplest case
|
||||
is a local Clifford operator $c_j$ acting on a qbit $j$: The stabilizers of are changed to
|
||||
$\langle c_j S^{(i)} c_j^\dagger\rangle_i$. Using the definition of the graphical representation
|
||||
it is clear that just the vertex operators are changed and the new vertex operators are given by:
|
||||
it is clear that just the vertex operators are changed and the new vertex operators are given by
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
o_i' &= o_i &\mbox{if } i \neq j\\
|
||||
o_i' &= c o_i c^\dagger &\mbox{if } i = j\\
|
||||
o_i' &= c o_i c^\dagger &\mbox{if } i = j.\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
|
@ -554,6 +560,7 @@ The action of a $CZ$ gate on the state $(V, E, O)$ is in most cases less trivial
|
|||
Let $i \neq j$ be two qbits, now consider the action of $CZ_{a,b}$ on $(V, E, O)$.
|
||||
The cases given here follow the implementation of a $CZ$ application in \cite{pyqcs},
|
||||
the respective paragraphs from \cite{andersbriegel2005} are given in italic.
|
||||
Most of the discussion follows the one given in \cite{andersbriegel2005} closely.
|
||||
|
||||
|
||||
\textbf{Case 1}(\textit{Case 1})\textbf{:}\\
|
||||
|
@ -590,7 +597,7 @@ to the following theorem:
|
|||
and right-multiplying $M_j^\dagger$ to the vertex operators in the sense
|
||||
that $\sqrt{-iX}^\dagger = \sqrt{iX}$ is right-multiplied to $o_j$ and
|
||||
$\sqrt{iZ}^\dagger = \sqrt{-iZ}$ is right-multiplied to $o_l$ for all
|
||||
neighbours $l$ of $j$.
|
||||
neighbours $l$ of $j$ \cite{andersbriegel2005}.
|
||||
|
||||
Without proof.
|
||||
\end{theorem}
|
||||
|
@ -627,13 +634,13 @@ clearing $o_b$ one can retry to clear $o_a$.
|
|||
In any case at least one vertex operator has been cleared. If both vertex operators have been
|
||||
cleared Case 1 will be applied. If there is just one cleared vertex operator it
|
||||
is the vertex with non-operand neighbours. Using this one can still apply a $CZ$: Without loss of generality
|
||||
assume that $a$ has non-operand neighbours and $b$ does not. Now the state $\ket{G}$ has the form \cite{andersbriegel2005}:
|
||||
assume that $a$ has non-operand neighbours and $b$ does not. Now the state $\ket{G}$ has the form \cite{andersbriegel2005}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\ket{G} &= \left(\prod\limits_{o_i \in O} o_i\right) \left(\prod\limits_{\{i,j\} \in E} CZ_{i,j}\right) \ket{+}_n \\
|
||||
&= \left(\prod\limits_{o_i \in O \setminus \{o_b\}} o_i \right) \left(\prod\limits_{\{i,j\} \in E \setminus \{a,b\}} CZ_{i,j}\right) o_b (CZ_{a,b})^s \ket{+}_n \\
|
||||
&= \left(\prod\limits_{o_i \in O \setminus \{o_b\}} o_i \right) \left(\prod\limits_{\{i,j\} \in E \setminus \{a,b\}} CZ_{i,j}\right) \ket{+}_{n-2} \otimes \left(o_b (CZ_{a,b})^s \ket{+}_2\right) \\
|
||||
&= \left(\prod\limits_{o_i \in O \setminus \{o_b\}} o_i \right) \left(\prod\limits_{\{i,j\} \in E \setminus \{a,b\}} CZ_{i,j}\right) \ket{+}_{n-2} \otimes \left(o_b (CZ_{a,b})^s \ket{+}_2\right) .\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
|
@ -655,11 +662,14 @@ If one wants to do computations using this formalism it is however also necessar
|
|||
|
||||
\subsubsection{Measurements on Graph States}
|
||||
|
||||
This is adapted from \cite{andersbriegel2005}; measurement results and updating the graph after
|
||||
a measurement is described in \cite{hein_eisert_briegel2008}.
|
||||
|
||||
Recalling \ref{ref:meas_stab} it is clear that one has to compute the commutator of
|
||||
the observable $g_a = Z_a$ with the stabilizers to get the probability amplitudes
|
||||
which is a quite expensive computation in theory. It is possible to simplify
|
||||
the problem by pulling the observable behind the vertex operators. For this consider
|
||||
the projector $P_{a,s} = \frac{I + (-1)^sZ_a}{2}$:
|
||||
the projector $P_{a,s} = \frac{I + (-1)^sZ_a}{2}$
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
|
@ -667,32 +677,32 @@ the projector $P_{a,s} = \frac{I + (-1)^sZ_a}{2}$:
|
|||
&= \left(\prod\limits_{o_i \in O \setminus \{o_a\}}o_i \right)P_a o_a \ket{\bar{G}} \\
|
||||
&= \left(\prod\limits_{o_i \in O \setminus \{o_a\}}o_i \right) o_a o_a^\dagger P_a o_a \ket{\bar{G}} \\
|
||||
&= \left(\prod\limits_{o_i \in O} o_i \right) o_a^\dagger P_a o_a \ket{\bar{G}} \\
|
||||
&= \left(\prod\limits_{o_i \in O} o_i \right) \tilde{P}_{a,s} \ket{\bar{G}} \\
|
||||
&= \left(\prod\limits_{o_i \in O} o_i \right) \tilde{P}_{a,s} \ket{\bar{G}} .\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
This transformed projector has the important property that it still is a Pauli projector
|
||||
as $o_a$ is a Clifford operator:
|
||||
as $o_a$ is a Clifford operator
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\tilde{P}_{a,s} &= o_a^\dagger P_a o_a \\
|
||||
&= o_a^\dagger \frac{I + (-1)^sZ_a}{2} o_a \\
|
||||
&= \frac{I + (-1)^s o_a^\dagger Z_a o_a}{2} \\
|
||||
&= \frac{I + (-1)^s \tilde{g}_a}{2} \\
|
||||
&= \frac{I + (-1)^s \tilde{g}_a}{2} .\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
Where $\tilde{g}_a \in \{+1, -1\}\cdot\{X_a, Y_a, Z_a\}$. Therefore, it is enough to study the measurements
|
||||
of any Pauli operator on the vertex operator free graph states. The commutators of the observable
|
||||
with the $K_G^{(i)}$ are quite easy to compute. Note that Pauli matrices either commute or anticommute
|
||||
and it is easier to list the operators that anticommute:
|
||||
and it is easier to list the operators that anticommute
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
A_{\pm X_a} &= \left\{j \middle| \{j, a\} \in E\right\}\\
|
||||
A_{\pm Y_a} &= \left\{j \middle| \{j, a\} \in E\right\} \cup \{a\} \\
|
||||
A_{\pm Z_a} &= \{a\}\\
|
||||
A_{\pm Z_a} &= \{a\}.\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
|
@ -704,29 +714,29 @@ and $\tilde{g}_a$ are related by just inverting the result $s$.
|
|||
|
||||
The calculations to obtain the transformation on graph and vertex operators are lengthy and follow
|
||||
the scheme of Lemma \ref{lemma:M_a}. \cite[Section IV]{hein_eisert_briegel2008} also contains
|
||||
the steps required to obtain the following results:
|
||||
the steps required to obtain the following results
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
U_{Z,s} &= \left(\prod\limits_{b \in n_a} Z_b^s\right) X_a^s H_a \\
|
||||
U_{Y,s} &= \prod\limits_{b \in n_a} \sqrt{(-1)^{1-s} iZ_b} \sqrt{(-1)^{1-s} iZ_a}\\
|
||||
U_{Y,s} &= \prod\limits_{b \in n_a} \sqrt{(-1)^{1-s} iZ_b} \sqrt{(-1)^{1-s} iZ_a}.\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
These transformations split it two parts: the first is a result of Lemma \ref{lemma:stab_measurement}.
|
||||
The second part makes sure that the qbit $a$ is diagonal in measured observable and has the correct eigenvalue.
|
||||
When comparing with Lemma \ref{lemma:stab_measurement} in both cases $Y,Z$ the anticommuting stabilizer
|
||||
$K_G^{(a)}$ is chosen. The graph is changed according to:
|
||||
$K_G^{(a)}$ is chosen. The graph is changed according to
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
E'_{Z} &= E \setminus \left\{\{i,a\} \middle| i \in V\right\}\\
|
||||
E'_{Y} &= E \Delta (n_a \otimes n_a) \setminus \left\{\{i,a\} \middle| i \in V\right\}\\
|
||||
E'_{Y} &= E \Delta (n_a \otimes n_a) \setminus \left\{\{i,a\} \middle| i \in V\right\}.\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
|
||||
For $g_a = X_a$ one has to choose a $b \in n_a$ and the transformations are:
|
||||
For $g_a = X_a$ one has to choose a $b \in n_a$ and the transformations are
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
|
@ -739,7 +749,7 @@ For $g_a = X_a$ one has to choose a $b \in n_a$ and the transformations are:
|
|||
E'_{X} = E &\Delta (n_b \otimes n_a) \\
|
||||
& \Delta ((n_b \cap n_a) \otimes (n_b \cap n_a)) \\
|
||||
& \Delta (\{b\} \otimes (n_a \setminus \{b\})) \\
|
||||
& \setminus \left\{\{i,a\} \middle| i \in V\right\}\\
|
||||
& \setminus \left\{\{i,a\} \middle| i \in V\right\}.\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user