did some work on the thesis
This commit is contained in:
parent
5f9fc69470
commit
09a7e29f43
|
@ -2,7 +2,9 @@ latex=xelatex
|
|||
pdflatex=xelatex
|
||||
bibtex=bibtex
|
||||
|
||||
chapters = chapters/introduction.tex
|
||||
chapters=chapters/introduction.tex \
|
||||
chapters/quantum_computing.tex \
|
||||
chapters/stabilizer.tex
|
||||
|
||||
all: main.pdf
|
||||
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
\section{Introduction}
|
||||
|
||||
|
188
thesis/chapters/quantum_computing.tex
Normal file
188
thesis/chapters/quantum_computing.tex
Normal file
|
@ -0,0 +1,188 @@
|
|||
% vim: ft=tex
|
||||
\section{Quantum Computing}
|
||||
|
||||
\subsection{Qbits and Gates}
|
||||
\subsubsection{Single Qbits}
|
||||
|
||||
\begin{definition}
|
||||
A qbit is a two level quantum mechanical system, i.e. it has the eigenbasis
|
||||
$ \{\ket{\uparrow} \equiv \ket{1}, \ket{\downarrow} \equiv \ket{0}\} $
|
||||
with $\braket{\uparrow}{\downarrow} = 0$. In the folling this basis will be called
|
||||
the $Z$ basis in analogy to the conventions used in spin systems. For some computations
|
||||
it can be useful to have component vectors, $\ket{\uparrow} \equiv \left(\begin{array}{c} 0 \\ 1\end{array} \right)$ and
|
||||
$\ket{\downarrow} \equiv \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$
|
||||
are used in these cases.
|
||||
\end{definition}
|
||||
|
||||
A gate acting on a qbit is a unitary operator $G \in U(2)$. One can show that
|
||||
$\forall G \in U(2)$ $G$ can be approximated arbitrarily good as a product of unitary generator matrices
|
||||
\cite[Chapter 4.3]{kaye_ea2007}\cite[Chapter 2]{marquezino_ea_2019},
|
||||
common choices for the generators are $ X, H, R_{\phi}$ and $Z, H, R_{\phi}$ with
|
||||
\label{ref:singleqbitgates}
|
||||
|
||||
\begin{equation}
|
||||
X := \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
Z := \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
H := \frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1\end{array}\right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
I := \left(\begin{array}{cc} 1 & 0 \\ 0 & 1\end{array}\right)
|
||||
\end{equation}
|
||||
|
||||
Note that $X = HZH$ and $Z = R_{\pi}$, so the set of $H, R_\phi$ is sufficient.
|
||||
Further note that the basis vectors are chosen s.t. $Z\ket{0} = +\ket{0}$ and $Z\ket{1} = -\ket{1}$,
|
||||
transforming to the other Pauli eigenstates is done using $H$ and $SH$:
|
||||
|
||||
\begin{equation}
|
||||
S = R_{\frac{\pi}{2}} = \left(\begin{array}{cc} 1 & 0 \\ 0 & i\end{array}\right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
S H Z H^\dagger S^\dagger = S X S^\dagger = Y
|
||||
\end{equation}
|
||||
|
||||
\subsubsection{Many Qbits}
|
||||
|
||||
\begin{postulate}
|
||||
A $N$ qbit quantum mechanical state is the tensor product\cite[Definition 14.3]{wuest1995} of the $N$ single qbit
|
||||
states.
|
||||
\end{postulate}
|
||||
|
||||
Let $\ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ and $\ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$
|
||||
be the basis of the one-qbit systems. Then two-qbit basis states are
|
||||
|
||||
\begin{equation}
|
||||
\ket{0} := \ket{0b00} := \ket{0}_s \otimes \ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\ket{1} := \ket{0b01} := \ket{0}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\ket{2} := \ket{0b10} := \ket{1}_s \otimes \ket{0}_s := \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} \right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\ket{3} := \ket{0b11} := \ket{1}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right)
|
||||
\end{equation}
|
||||
|
||||
The $N$ qbit basis states can then be constructed in a similar manner.
|
||||
A general $N$ qbit state can then be written as a superposition of the
|
||||
integer states:
|
||||
|
||||
\begin{equation}
|
||||
\ket{\psi} = \sum\limits_{i = 0}^{2^N - 1} c_i \ket{i}
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\sum\limits_{i = 0}^{2^N - 1} |c_i|^2 = 1
|
||||
\end{equation}
|
||||
|
||||
The states $\ket{i}$ for $i = 0, ..., 2^{n}-1$ are called integer states. Note
|
||||
that integer states are eigenstates of the $Z$ operators. The computational basis
|
||||
is $\{\ket{i_0} \otimes ... \otimes \ket{i_{n-1}} | i_0, ..., i_{n-1} = 0, 1\}$.
|
||||
|
||||
\begin{definition}
|
||||
For a single qbit gate $U$ and a qbit $j = 0, 1, ..., n - 1$
|
||||
|
||||
\begin{equation}
|
||||
U_j := \left(\bigotimes\limits_{i = 0}^{j - 1} I\right)
|
||||
\otimes U
|
||||
\otimes \left(\bigotimes\limits_{i = j + 1}^{n - 1} I \right)
|
||||
\end{equation}
|
||||
is the $U$ gate acting on qbit $j$.
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}\label{def:CU}
|
||||
For two qbits $i,j = 0, 1, ..., n - 1$, $i \neq j$ and a gate $U_i$ acting on $i$
|
||||
the controlled version of $U$ is defined by
|
||||
\begin{equation}\label{eq:CU}
|
||||
CU_{i, j} = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes U_i
|
||||
\end{equation}
|
||||
|
||||
In particular for $X, Z$:
|
||||
\begin{equation}\label{eq:CX_pr}
|
||||
CX(i, j) = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes X_i
|
||||
\end{equation}
|
||||
\begin{equation}\label{eq:CZ_pr}
|
||||
CZ(i, j) = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes Z_i
|
||||
\end{equation}
|
||||
|
||||
\end{definition}
|
||||
|
||||
In the definition \ref{def:CU} $i$ is called the act-qbit and $j$ the control-qbit. In words
|
||||
$CU$ applies the gate $U$ to the act-qbit if the control-qbit is in its $\ket{1}$ state.
|
||||
|
||||
One can show that the gates in \ref{ref:singleqbitgates} together with an entanglement gate, such as $CX$ or $CZ$ are enough
|
||||
to generate an arbitrary $N$ qbit gate\cite[Chapter 4.3]{kaye_ea2007}\cite{barenco_ea_1995}.
|
||||
The matrix representation of $CX$ and $CZ$ for two qbits is given by (this is quickly verified by applying the
|
||||
matrices to the basis states)
|
||||
|
||||
\begin{equation}
|
||||
CX_{1, 0} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{array}\right)
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
CZ_{1, 0} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -1 \end{array}\right)
|
||||
\end{equation}
|
||||
|
||||
\subsubsection{Measurements}
|
||||
|
||||
\textbf{FIXME} I don't like this at all.
|
||||
|
||||
\begin{postulate}
|
||||
Let
|
||||
$$\ket{\psi} = \alpha\ket{\phi_1} \otimes \ket{1}_j + \beta\ket{\phi_0} \otimes \ket{0}_j$$
|
||||
be a $n$ qbit state
|
||||
where $\ket{1}_j, \ket{0}_j$ denote the $j$-th qbit state and $|\alpha|^2 + |\beta|^2 = 1$.
|
||||
Then the measurement of the $j$-th qbit will yield
|
||||
$$\ket{\phi_1} \otimes \ket{1}_n$$
|
||||
with probability $|\alpha|^2$ and
|
||||
$$\ket{\phi_0} \otimes \ket{0}_n$$
|
||||
with probability $|\beta|^2$. This is called collapse of the wave function.
|
||||
\end{postulate}
|
||||
|
||||
Measuring a qbit will also yield a classical result $0$ or $1$ with the respective probabilities.
|
||||
|
||||
\begin{corrolary}
|
||||
In general the measurement of a qbit is not invertible, in particular it cannot be represented as a
|
||||
unitary operator.
|
||||
\end{corrolary}
|
||||
|
||||
\begin{proof}
|
||||
The measuerment in not injective: Measuring both
|
||||
$\ket{0}$ and $\frac{1}{\sqrt{2}}(\ket{0} + \ket{1})$ (can) map to $\ket{0}$.
|
||||
|
||||
Any unitary matrix $U$ has the inverse $U^\dagger \equiv U^{-1}$.
|
||||
\end{proof}
|
||||
|
||||
As a measurement is not unitary it is not a gate as in the definition above.
|
||||
In the following discussion the term \textit{measurement gate} will be used from time
|
||||
to time as a measurement can be treated similarely while doing numerics.
|
||||
|
||||
Measurements are always performed in the computational basis, i.e. for a qbit
|
||||
$i$ $Z_i$ is measured. Let the state to be measured be
|
||||
|
||||
\begin{equation}
|
||||
\ket{\psi} = \alpha\ket{0}\otimes\ket{\psi_0} + \beta\ket{1}\otimes\ket{\psi_1}
|
||||
\end{equation}
|
||||
|
||||
then a result $0$ is measured with probability $|\alpha|^2$ and $1$ with probability
|
||||
$|\beta|^2 = 1 - |\alpha|^2$. The wave function is then collapsed to
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\ket{\psi'} = \left\{\begin{array}{c}\ket{0}\otimes\ket{\psi_0}, \mbox{ for a result 0 } \\
|
||||
\ket{1}\otimes\ket{\psi_1}, \mbox{ for a result 1 }
|
||||
\end{array}\right\}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\subsection{Quantum Circuits}
|
||||
|
||||
Quantum circuits are a simple and well-readable way to express the application
|
||||
of several gates on a state.
|
||||
|
||||
\textbf{TODO}
|
16
thesis/chapters/stabilizer.tex
Normal file
16
thesis/chapters/stabilizer.tex
Normal file
|
@ -0,0 +1,16 @@
|
|||
% vim: ft=tex
|
||||
|
||||
\section{The Stabilizer Formalism}
|
||||
|
||||
The stabilizer formalism was originally introduced by Gottesman\cite{gottesman1997}
|
||||
for quantum error correction and is a useful tool to encode quantum information
|
||||
such that it is protected against noise. The prominent Shor code \cite{shor1995}
|
||||
is an example of a stabilizer code (although it was discovered before the stabilizer
|
||||
formalism was discovered), as are the 3-qbit bit-flip and phase-flip codes.
|
||||
|
||||
It was only later that Gottesman and Knill discovered that stabilizer states can
|
||||
be simulated in polynomial time on a classical machine \cite{gottesman2008}. This
|
||||
performance has since been improved to $n\log(n)$ time on average \cite{andersbriegel2005}.
|
||||
|
||||
\subsection{Stabilizers and Stabilizer States}
|
||||
|
|
@ -108,3 +108,24 @@
|
|||
note={https://arxiv.org/abs/quant-ph/9807006}
|
||||
}
|
||||
|
||||
@book{
|
||||
marquezino_ea_2019,
|
||||
title={A Primer on Quantum Computing},
|
||||
year=2019,
|
||||
author={Franklin de Lima Marquezino, Renato Portugal, Carlile Lavor},
|
||||
publisher={Springer}
|
||||
}
|
||||
@article{
|
||||
barenco_ea_1995,
|
||||
title={Elementary gates for quantum computation},
|
||||
year=1995,
|
||||
author={Adriano Barenco et al.},
|
||||
note={https://journals.aps.org/pra/pdf/10.1103/PhysRevA.52.3457}
|
||||
}
|
||||
@article{
|
||||
shor1995,
|
||||
title={Scheme for reducing decoherence in quantum computer memory},
|
||||
year=1995,
|
||||
author={Peter Shor},
|
||||
note={https://journals.aps.org/pra/pdf/10.1103/PhysRevA.52.R2493}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,40 @@
|
|||
\documentclass[a4paper,12pt]{scrartcl}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{amssymb, amsthm}
|
||||
\usepackage{setspace}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{geometry}
|
||||
\usepackage{enumerate}
|
||||
\usepackage{physics}
|
||||
\usepackage{listings}
|
||||
%\usepackage{struktex}
|
||||
\usepackage{qcircuit}
|
||||
|
||||
\geometry{left=2.5cm,right=2.5cm,top=2.5cm,bottom=2.5cm}
|
||||
|
||||
\newtheorem{definition}{Definition}
|
||||
\newtheorem{postulate}{Postulate}
|
||||
\newtheorem{corrolary}{Corrolary}
|
||||
\newtheorem{lemma}{Lemma}
|
||||
\newtheorem{theorem}{Theorem}
|
||||
|
||||
\numberwithin{equation}{section}
|
||||
|
||||
\title{An Efficient Quantum Computing Simulator using a Graphical Description for Many-Qbit Systems}
|
||||
\author{Daniel Knüttel}
|
||||
\date{10.04.2020}
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
%\frontmatter
|
||||
\tableofcontents
|
||||
|
||||
\include{chapters/introduction}
|
||||
\include{chapters/quantum_computing}
|
||||
\include{chapters/stabilizer}
|
||||
|
||||
\bibliographystyle{unsrt}
|
||||
\bibliography{main}{}
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user