diff --git a/thesis/Makefile b/thesis/Makefile index 079fda4..288adaf 100644 --- a/thesis/Makefile +++ b/thesis/Makefile @@ -2,7 +2,9 @@ latex=xelatex pdflatex=xelatex bibtex=bibtex -chapters = chapters/introduction.tex +chapters=chapters/introduction.tex \ + chapters/quantum_computing.tex \ + chapters/stabilizer.tex all: main.pdf diff --git a/thesis/chapters/introduction.tex b/thesis/chapters/introduction.tex index e69de29..407ca85 100644 --- a/thesis/chapters/introduction.tex +++ b/thesis/chapters/introduction.tex @@ -0,0 +1,3 @@ +\section{Introduction} + + diff --git a/thesis/chapters/quantum_computing.tex b/thesis/chapters/quantum_computing.tex new file mode 100644 index 0000000..bc998eb --- /dev/null +++ b/thesis/chapters/quantum_computing.tex @@ -0,0 +1,188 @@ +% vim: ft=tex +\section{Quantum Computing} + +\subsection{Qbits and Gates} +\subsubsection{Single Qbits} + +\begin{definition} + A qbit is a two level quantum mechanical system, i.e. it has the eigenbasis + $ \{\ket{\uparrow} \equiv \ket{1}, \ket{\downarrow} \equiv \ket{0}\} $ + with $\braket{\uparrow}{\downarrow} = 0$. In the folling this basis will be called + the $Z$ basis in analogy to the conventions used in spin systems. For some computations + it can be useful to have component vectors, $\ket{\uparrow} \equiv \left(\begin{array}{c} 0 \\ 1\end{array} \right)$ and + $\ket{\downarrow} \equiv \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ + are used in these cases. +\end{definition} + +A gate acting on a qbit is a unitary operator $G \in U(2)$. One can show that +$\forall G \in U(2)$ $G$ can be approximated arbitrarily good as a product of unitary generator matrices +\cite[Chapter 4.3]{kaye_ea2007}\cite[Chapter 2]{marquezino_ea_2019}, +common choices for the generators are $ X, H, R_{\phi}$ and $Z, H, R_{\phi}$ with +\label{ref:singleqbitgates} + +\begin{equation} + X := \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right) +\end{equation} +\begin{equation} + Z := \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right) +\end{equation} +\begin{equation} + H := \frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1\end{array}\right) +\end{equation} +\begin{equation} + R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right) +\end{equation} +\begin{equation} + I := \left(\begin{array}{cc} 1 & 0 \\ 0 & 1\end{array}\right) +\end{equation} + +Note that $X = HZH$ and $Z = R_{\pi}$, so the set of $H, R_\phi$ is sufficient. +Further note that the basis vectors are chosen s.t. $Z\ket{0} = +\ket{0}$ and $Z\ket{1} = -\ket{1}$, +transforming to the other Pauli eigenstates is done using $H$ and $SH$: + +\begin{equation} + S = R_{\frac{\pi}{2}} = \left(\begin{array}{cc} 1 & 0 \\ 0 & i\end{array}\right) +\end{equation} +\begin{equation} + S H Z H^\dagger S^\dagger = S X S^\dagger = Y +\end{equation} + +\subsubsection{Many Qbits} + +\begin{postulate} + A $N$ qbit quantum mechanical state is the tensor product\cite[Definition 14.3]{wuest1995} of the $N$ single qbit +states. +\end{postulate} + +Let $\ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ and $\ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$ +be the basis of the one-qbit systems. Then two-qbit basis states are + +\begin{equation} + \ket{0} := \ket{0b00} := \ket{0}_s \otimes \ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right) +\end{equation} +\begin{equation} + \ket{1} := \ket{0b01} := \ket{0}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right) +\end{equation} +\begin{equation} + \ket{2} := \ket{0b10} := \ket{1}_s \otimes \ket{0}_s := \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} \right) +\end{equation} +\begin{equation} + \ket{3} := \ket{0b11} := \ket{1}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right) +\end{equation} + +The $N$ qbit basis states can then be constructed in a similar manner. +A general $N$ qbit state can then be written as a superposition of the +integer states: + +\begin{equation} + \ket{\psi} = \sum\limits_{i = 0}^{2^N - 1} c_i \ket{i} +\end{equation} +\begin{equation} + \sum\limits_{i = 0}^{2^N - 1} |c_i|^2 = 1 +\end{equation} + +The states $\ket{i}$ for $i = 0, ..., 2^{n}-1$ are called integer states. Note +that integer states are eigenstates of the $Z$ operators. The computational basis +is $\{\ket{i_0} \otimes ... \otimes \ket{i_{n-1}} | i_0, ..., i_{n-1} = 0, 1\}$. + +\begin{definition} +For a single qbit gate $U$ and a qbit $j = 0, 1, ..., n - 1$ + + \begin{equation} + U_j := \left(\bigotimes\limits_{i = 0}^{j - 1} I\right) + \otimes U + \otimes \left(\bigotimes\limits_{i = j + 1}^{n - 1} I \right) + \end{equation} +is the $U$ gate acting on qbit $j$. +\end{definition} + +\begin{definition}\label{def:CU} + For two qbits $i,j = 0, 1, ..., n - 1$, $i \neq j$ and a gate $U_i$ acting on $i$ + the controlled version of $U$ is defined by + \begin{equation}\label{eq:CU} + CU_{i, j} = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes U_i + \end{equation} + + In particular for $X, Z$: + \begin{equation}\label{eq:CX_pr} + CX(i, j) = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes X_i + \end{equation} + \begin{equation}\label{eq:CZ_pr} + CZ(i, j) = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes Z_i + \end{equation} + +\end{definition} + +In the definition \ref{def:CU} $i$ is called the act-qbit and $j$ the control-qbit. In words +$CU$ applies the gate $U$ to the act-qbit if the control-qbit is in its $\ket{1}$ state. + +One can show that the gates in \ref{ref:singleqbitgates} together with an entanglement gate, such as $CX$ or $CZ$ are enough +to generate an arbitrary $N$ qbit gate\cite[Chapter 4.3]{kaye_ea2007}\cite{barenco_ea_1995}. +The matrix representation of $CX$ and $CZ$ for two qbits is given by (this is quickly verified by applying the +matrices to the basis states) + +\begin{equation} + CX_{1, 0} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{array}\right) +\end{equation} +\begin{equation} + CZ_{1, 0} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -1 \end{array}\right) +\end{equation} + +\subsubsection{Measurements} + +\textbf{FIXME} I don't like this at all. + +\begin{postulate} + Let + $$\ket{\psi} = \alpha\ket{\phi_1} \otimes \ket{1}_j + \beta\ket{\phi_0} \otimes \ket{0}_j$$ + be a $n$ qbit state + where $\ket{1}_j, \ket{0}_j$ denote the $j$-th qbit state and $|\alpha|^2 + |\beta|^2 = 1$. + Then the measurement of the $j$-th qbit will yield + $$\ket{\phi_1} \otimes \ket{1}_n$$ + with probability $|\alpha|^2$ and + $$\ket{\phi_0} \otimes \ket{0}_n$$ + with probability $|\beta|^2$. This is called collapse of the wave function. +\end{postulate} + +Measuring a qbit will also yield a classical result $0$ or $1$ with the respective probabilities. + +\begin{corrolary} + In general the measurement of a qbit is not invertible, in particular it cannot be represented as a + unitary operator. +\end{corrolary} + +\begin{proof} + The measuerment in not injective: Measuring both + $\ket{0}$ and $\frac{1}{\sqrt{2}}(\ket{0} + \ket{1})$ (can) map to $\ket{0}$. + + Any unitary matrix $U$ has the inverse $U^\dagger \equiv U^{-1}$. +\end{proof} + +As a measurement is not unitary it is not a gate as in the definition above. +In the following discussion the term \textit{measurement gate} will be used from time +to time as a measurement can be treated similarely while doing numerics. + +Measurements are always performed in the computational basis, i.e. for a qbit +$i$ $Z_i$ is measured. Let the state to be measured be + +\begin{equation} + \ket{\psi} = \alpha\ket{0}\otimes\ket{\psi_0} + \beta\ket{1}\otimes\ket{\psi_1} +\end{equation} + +then a result $0$ is measured with probability $|\alpha|^2$ and $1$ with probability +$|\beta|^2 = 1 - |\alpha|^2$. The wave function is then collapsed to + +\begin{equation} + \begin{aligned} + \ket{\psi'} = \left\{\begin{array}{c}\ket{0}\otimes\ket{\psi_0}, \mbox{ for a result 0 } \\ + \ket{1}\otimes\ket{\psi_1}, \mbox{ for a result 1 } + \end{array}\right\} + \end{aligned} +\end{equation} + +\subsection{Quantum Circuits} + +Quantum circuits are a simple and well-readable way to express the application +of several gates on a state. + +\textbf{TODO} diff --git a/thesis/chapters/stabilizer.tex b/thesis/chapters/stabilizer.tex new file mode 100644 index 0000000..5cf70ea --- /dev/null +++ b/thesis/chapters/stabilizer.tex @@ -0,0 +1,16 @@ +% vim: ft=tex + +\section{The Stabilizer Formalism} + +The stabilizer formalism was originally introduced by Gottesman\cite{gottesman1997} +for quantum error correction and is a useful tool to encode quantum information +such that it is protected against noise. The prominent Shor code \cite{shor1995} +is an example of a stabilizer code (although it was discovered before the stabilizer +formalism was discovered), as are the 3-qbit bit-flip and phase-flip codes. + +It was only later that Gottesman and Knill discovered that stabilizer states can +be simulated in polynomial time on a classical machine \cite{gottesman2008}. This +performance has since been improved to $n\log(n)$ time on average \cite{andersbriegel2005}. + +\subsection{Stabilizers and Stabilizer States} + diff --git a/thesis/main.bib b/thesis/main.bib index 0d6ce99..50674a8 100644 --- a/thesis/main.bib +++ b/thesis/main.bib @@ -108,3 +108,24 @@ note={https://arxiv.org/abs/quant-ph/9807006} } +@book{ + marquezino_ea_2019, + title={A Primer on Quantum Computing}, + year=2019, + author={Franklin de Lima Marquezino, Renato Portugal, Carlile Lavor}, + publisher={Springer} +} +@article{ + barenco_ea_1995, + title={Elementary gates for quantum computation}, + year=1995, + author={Adriano Barenco et al.}, + note={https://journals.aps.org/pra/pdf/10.1103/PhysRevA.52.3457} +} +@article{ + shor1995, + title={Scheme for reducing decoherence in quantum computer memory}, + year=1995, + author={Peter Shor}, + note={https://journals.aps.org/pra/pdf/10.1103/PhysRevA.52.R2493} +} diff --git a/thesis/main.tex b/thesis/main.tex index e69de29..c4bfe5b 100644 --- a/thesis/main.tex +++ b/thesis/main.tex @@ -0,0 +1,40 @@ +\documentclass[a4paper,12pt]{scrartcl} +\usepackage[utf8]{inputenc} +\usepackage{graphicx} +\usepackage{amssymb, amsthm} +\usepackage{setspace} +\usepackage{amsmath} +\usepackage{hyperref} +\usepackage{geometry} +\usepackage{enumerate} +\usepackage{physics} +\usepackage{listings} +%\usepackage{struktex} +\usepackage{qcircuit} + +\geometry{left=2.5cm,right=2.5cm,top=2.5cm,bottom=2.5cm} + +\newtheorem{definition}{Definition} +\newtheorem{postulate}{Postulate} +\newtheorem{corrolary}{Corrolary} +\newtheorem{lemma}{Lemma} +\newtheorem{theorem}{Theorem} + +\numberwithin{equation}{section} + +\title{An Efficient Quantum Computing Simulator using a Graphical Description for Many-Qbit Systems} +\author{Daniel Knüttel} +\date{10.04.2020} +\begin{document} +\maketitle + +%\frontmatter +\tableofcontents + +\include{chapters/introduction} +\include{chapters/quantum_computing} +\include{chapters/stabilizer} + +\bibliographystyle{unsrt} +\bibliography{main}{} +\end{document}