numerik1/Projekt1_Knuettel_Daniel.c

285 lines
6.0 KiB
C
Raw Normal View History

2018-11-11 17:49:43 +00:00
// Daniel Knüttel Aufgabe2
/*
* Copyright(c) 2018 Daniel Knüttel
*/
/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Dieses Programm ist Freie Software: Sie können es unter den Bedingungen
* der GNU General Public License, wie von der Free Software Foundation,
* Version 3 der Lizenz oder (nach Ihrer Wahl) jeder neueren
* veröffentlichten Version, weiterverbreiten und/oder modifizieren.
*
* Dieses Programm wird in der Hoffnung, dass es nützlich sein wird, aber
* OHNE JEDE GEWÄHRLEISTUNG, bereitgestellt; sogar ohne die implizite
* Gewährleistung der MARKTFÄHIGKEIT oder EIGNUNG FÜR EINEN BESTIMMTEN ZWECK.
* Siehe die GNU General Public License für weitere Details.
*
* Sie sollten eine Kopie der GNU General Public License zusammen mit diesem
* Programm erhalten haben. Wenn nicht, siehe <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
2018-11-11 19:16:10 +00:00
#include <math.h>
#define min(a, b) (((a) < (b)) ? (a) : (b))
#define square(a) ((a) * (a))
#define kronecker_delta(i, j) ((i) == (j) ? 1 : 0)
2018-11-11 17:49:43 +00:00
/*
* \brief Computes the householder partition of A.
* Stores the generating vectors of Q in the memory passed as A,
* the diagonal elements in alpha and the rest of R in the memory
* passed as A.
*
* \param A Matrix to partition. After the partition this memory contains Q and R.
* \param alpha Will be filled with diagonal elements of R.
* \param n Length of A[i].
* \param m Length of A.
* \return Status.
* */
int householder(double ** A, double * alpha, int n, int m);
/*
* \brief Computes the solution of and n times n system using a QR partition.
* Overwrites b.
*
* \param A Matrix that has been modified by the function householder.
* \param alpha Diagonal elements of R, produced by the function householder.
* \param n Length of A and A[i].
* \param b Vector b for Ax=b. Will be overwritten with elements of x.
* \return Status.
* */
int solve_QR(double ** A, double * alpha, int n, double * b);
/*
* \brief Computes Q^Tb and stores the result in b.
*
* \param A Matrix that has been modified by the function householder.
* \param alpha Diagonal elements of R, produced by the function householder.
* \param n Length of A and A[i].
* \param b Vector b for Ax=b. Will be overwritten with elements of the result.
*
* \return Status.
* */
int qtb(double ** A, double * alpha, int n, double * b);
/*
*
* \brief Uses backwards substitution to solve R = Q^Tb.
*
* \param A Matrix that has been modified by the function householder.
* \param alpha Diagonal elements of R, produced by the function householder.
* \param n Length of A and A[i].
* \param b Vector b for Ax=b. Will be overwritten with elements of the result.
*
* \return Status.
*
* */
int rw_subs(double ** A, double * alpha, int n, double * b);
/*
* \brief Print the matrix in a nicely formatted way to stream.
*
* \param stream The output stream.
* \param matrix The matrix to print.
* \param n Length of matrix[i].
* \param m Length of matrix.
*
* */
int fprintm(FILE * stream, double ** matrix, int n, int m);
/*
* \brief Print the vector in a nicely formatted way to stream.
*
* \param stream The output stream.
* \param vector The vector to print.
* \param n Length of vector.
*
* */
int fprintv(FILE * stream, double * vector, int n);
#define printm(matrix, n, m) fprintm(stdout, matrix, n, m)
#define printv(vector, n) fprintv(stdout, vector, n)
int main(void)
{
int status = 0;
return status;
}
int householder(double ** A, double * alpha, int n, int m)
{
2018-11-11 19:16:10 +00:00
if(n > m)
{
return 1;
}
int k, i, j;
double beta, gamma, delta;
/*
* This is just the sample implementation from the
* lecture script.
* */
for(k = 0; k < mkn(n, m - 1); k++)
{
alpha[k] = square(A[k][k]);
for(j = k + 1; j < m; j++)
{
alpha[k] += square(A[j][k]);
}
alpha[k] = sqrt(alpha[k]);
kf(A[k][k] < 0)
{
alpha[k] *= -1;
}
beta = alpha[k] * (A[k][k] - alpha[k]);
A[k][k] -= alpha[k];
for(i = k + 1; i < ; i++)
{
gamma = A[k][k] * A[k][i];
for(j = k + 1; j < ; j++)
{
gamma += A[j][k] * A[j][i];
}
delta = gamma / beta;
for(j = k; j < m; j++)
{
A[j][i] += delta * A[j][k];
}
}
}
return 0;
}
int fprintm(FILE * stream, double ** matrix, int n, int m)
{
int i, j, status = 0;
for(i = 0; i < m; i++)
{
if(i == 0)
{
printf("T ");
}
else if(i == m - 1)
{
printf("L ");
}
else
{
printf("| ");
}
for(j = 0; j < n; j++)
{
fprintf(stream, "%6.2f ", matrix[i][j]);
}
if(i == 0)
{
printf("T\n");
}
else if(i == m - 1)
{
printf("J\n");
}
else
{
printf("|\n");
}
}
return status;
}
int fprintv(FILE * stream, double * vector, int n)
{
int i;
for(i = 0; i < n; i++)
{
if(i == 0)
{
printf("T ");
}
else if(i == m - 1)
{
printf("L ");
}
else
{
printf("| ");
}
fprintf(stream, "%6.2f ", vector[i]);
if(i == 0)
{
printf("T\n");
}
else if(i == m - 1)
{
printf("J\n");
}
else
{
printf("|\n");
}
}
return 0;
}
int qtb(double ** A, double * alpha, int n, double * b)
{
/*
* Some short computing gives that:
*
* Q[i][j] = kronecker_delta(i, j) - 2*v[i]v[j]
* and for
* Q^T b = x
* x[i] = sum(over j)(Q[j][i]*b[j])
* */
2018-11-11 17:49:43 +00:00
int i, j;
2018-11-11 19:16:10 +00:00
double x
2018-11-11 17:49:43 +00:00
for(i = 0; i < n; i++)
{
2018-11-11 19:16:10 +00:00
for(j = 0; j < n; j++)
{
x += b[j] * (kronecker_delta(i, j)
- 2 * Q[i][i] * Q[i][j]);
}
b[i] = x;
2018-11-11 17:49:43 +00:00
}
2018-11-11 19:16:10 +00:00
return 0;
2018-11-11 17:49:43 +00:00
}
2018-11-11 19:16:10 +00:00
int rw_subs(double ** A, double * alpha, int n, double * b)
{