initial
This commit is contained in:
commit
49d42cdd68
127
Projekt1_Knuettel_Daniel.c
Normal file
127
Projekt1_Knuettel_Daniel.c
Normal file
|
@ -0,0 +1,127 @@
|
|||
// Daniel Knüttel Aufgabe2
|
||||
|
||||
/*
|
||||
* Copyright(c) 2018 Daniel Knüttel
|
||||
*/
|
||||
|
||||
/* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* Dieses Programm ist Freie Software: Sie können es unter den Bedingungen
|
||||
* der GNU General Public License, wie von der Free Software Foundation,
|
||||
* Version 3 der Lizenz oder (nach Ihrer Wahl) jeder neueren
|
||||
* veröffentlichten Version, weiterverbreiten und/oder modifizieren.
|
||||
*
|
||||
* Dieses Programm wird in der Hoffnung, dass es nützlich sein wird, aber
|
||||
* OHNE JEDE GEWÄHRLEISTUNG, bereitgestellt; sogar ohne die implizite
|
||||
* Gewährleistung der MARKTFÄHIGKEIT oder EIGNUNG FÜR EINEN BESTIMMTEN ZWECK.
|
||||
* Siehe die GNU General Public License für weitere Details.
|
||||
*
|
||||
* Sie sollten eine Kopie der GNU General Public License zusammen mit diesem
|
||||
* Programm erhalten haben. Wenn nicht, siehe <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/*
|
||||
* \brief Computes the householder partition of A.
|
||||
* Stores the generating vectors of Q in the memory passed as A,
|
||||
* the diagonal elements in alpha and the rest of R in the memory
|
||||
* passed as A.
|
||||
*
|
||||
* \param A Matrix to partition. After the partition this memory contains Q and R.
|
||||
* \param alpha Will be filled with diagonal elements of R.
|
||||
* \param n Length of A[i].
|
||||
* \param m Length of A.
|
||||
* \return Status.
|
||||
* */
|
||||
int householder(double ** A, double * alpha, int n, int m);
|
||||
|
||||
/*
|
||||
* \brief Computes the solution of and n times n system using a QR partition.
|
||||
* Overwrites b.
|
||||
*
|
||||
* \param A Matrix that has been modified by the function householder.
|
||||
* \param alpha Diagonal elements of R, produced by the function householder.
|
||||
* \param n Length of A and A[i].
|
||||
* \param b Vector b for Ax=b. Will be overwritten with elements of x.
|
||||
* \return Status.
|
||||
* */
|
||||
int solve_QR(double ** A, double * alpha, int n, double * b);
|
||||
|
||||
/*
|
||||
* \brief Computes Q^Tb and stores the result in b.
|
||||
*
|
||||
* \param A Matrix that has been modified by the function householder.
|
||||
* \param alpha Diagonal elements of R, produced by the function householder.
|
||||
* \param n Length of A and A[i].
|
||||
* \param b Vector b for Ax=b. Will be overwritten with elements of the result.
|
||||
*
|
||||
* \return Status.
|
||||
* */
|
||||
int qtb(double ** A, double * alpha, int n, double * b);
|
||||
|
||||
/*
|
||||
*
|
||||
* \brief Uses backwards substitution to solve R = Q^Tb.
|
||||
*
|
||||
* \param A Matrix that has been modified by the function householder.
|
||||
* \param alpha Diagonal elements of R, produced by the function householder.
|
||||
* \param n Length of A and A[i].
|
||||
* \param b Vector b for Ax=b. Will be overwritten with elements of the result.
|
||||
*
|
||||
* \return Status.
|
||||
*
|
||||
* */
|
||||
int rw_subs(double ** A, double * alpha, int n, double * b);
|
||||
|
||||
|
||||
/*
|
||||
* \brief Print the matrix in a nicely formatted way to stream.
|
||||
*
|
||||
* \param stream The output stream.
|
||||
* \param matrix The matrix to print.
|
||||
* \param n Length of matrix[i].
|
||||
* \param m Length of matrix.
|
||||
*
|
||||
* */
|
||||
int fprintm(FILE * stream, double ** matrix, int n, int m);
|
||||
/*
|
||||
* \brief Print the vector in a nicely formatted way to stream.
|
||||
*
|
||||
* \param stream The output stream.
|
||||
* \param vector The vector to print.
|
||||
* \param n Length of vector.
|
||||
*
|
||||
* */
|
||||
int fprintv(FILE * stream, double * vector, int n);
|
||||
|
||||
#define printm(matrix, n, m) fprintm(stdout, matrix, n, m)
|
||||
#define printv(vector, n) fprintv(stdout, vector, n)
|
||||
|
||||
int main(void)
|
||||
{
|
||||
int status = 0;
|
||||
return status;
|
||||
}
|
||||
|
||||
|
||||
int householder(double ** A, double * alpha, int n, int m)
|
||||
{
|
||||
int i, j;
|
||||
for(i = 0; i < n; i++)
|
||||
{
|
||||
// Bring this column in triangular shape.
|
||||
}
|
||||
}
|
75
gaussian.py
Normal file
75
gaussian.py
Normal file
|
@ -0,0 +1,75 @@
|
|||
import copy
|
||||
import pprint
|
||||
import numpy
|
||||
|
||||
def gaussian_with_pivot(A, b, round = lambda x: x):
|
||||
A = numpy.array(A, dtype = numpy.float64)
|
||||
b = numpy.array(b, dtype = numpy.float64)
|
||||
L = numpy.identity(len(A), dtype = numpy.float64)
|
||||
s = numpy.zeros(len(A), dtype = numpy.float64)
|
||||
|
||||
for k in range(len(A)):
|
||||
max_a = numpy.absolute(A[k:,k]).argmax()
|
||||
A[[k, k + max_a]] = A[[k + max_a, k]]
|
||||
b[[k, k + max_a]] = b[[k + max_a, k]]
|
||||
s[k] = k + max_a
|
||||
|
||||
for i in range(k + 1, len(A)):
|
||||
L[i][k] = round(A[i][k]/A[k][k])
|
||||
b[i] = round(b[i] - round(L[i][k] * b[k]))
|
||||
|
||||
for j in range(k + 1, len(A)):
|
||||
A[i][j] = round(A[i][j] - round(L[i][k] * A[k][j]))
|
||||
|
||||
A[i][k] = 0
|
||||
return A, b, L, s
|
||||
|
||||
def gaussian_no_pivot(A, b, round = lambda x: x):
|
||||
A = numpy.array(A, dtype = numpy.float64)
|
||||
b = numpy.array(b, dtype = numpy.float64)
|
||||
L = numpy.identity(len(A), dtype = numpy.float64)
|
||||
|
||||
for k in range(len(A)):
|
||||
|
||||
for i in range(k + 1, len(A)):
|
||||
L[i][k] = round(A[i][k]/A[k][k])
|
||||
b[i] = round(b[i] - round(L[i][k] * b[k]))
|
||||
|
||||
for j in range(k + 1, len(A)):
|
||||
A[i][j] = round(A[i][j] - round(L[i][k] * A[k][j]))
|
||||
|
||||
A[i][k] = 0
|
||||
return A, b, L
|
||||
|
||||
|
||||
if( __name__ == "__main__"):
|
||||
# For Exercise 1
|
||||
A = [[10, 1, 0], [15, 2, 1], [5, 0, 1]]
|
||||
b = [12, 18, 4]
|
||||
pprint.pprint(gaussian_with_pivot(A, b))
|
||||
|
||||
|
||||
# For Exercise 2
|
||||
A = [[7, 1, 1]
|
||||
, [10, 1, 1]
|
||||
, [1000, 0, 1]]
|
||||
b = [10, 13, 1001]
|
||||
pprint.pprint(A)
|
||||
|
||||
def round4(x):
|
||||
return float("%.4g" % x)
|
||||
|
||||
pprint.pprint(gaussian_with_pivot(A, b, round4))
|
||||
pprint.pprint(gaussian_no_pivot(A, b, round4))
|
||||
|
||||
|
||||
A = numpy.zeros((10, 10))
|
||||
|
||||
for i in range(10):
|
||||
if(i - 1 > 0):
|
||||
A[i][i - 1] = -1
|
||||
A[i][i] = 2
|
||||
if(i + 1 < 10):
|
||||
A[i][i + 1] = -1
|
||||
|
||||
pprint.pprint(gaussian_no_pivot(A, numpy.ones(10)))
|
Loading…
Reference in New Issue
Block a user