Compare commits
12 Commits
use_moment
...
master
Author | SHA1 | Date | |
---|---|---|---|
6927e8cf76 | |||
b7f276a8dd | |||
17bd8fb17f | |||
88a9b1c57f | |||
3555cc13bb | |||
a99b3ff253 | |||
e00b9c0455 | |||
f6139da2aa | |||
a9450179be | |||
609c9c3d1a | |||
48b8ce8c88 | |||
da2fd89946 |
|
@ -1,11 +1,10 @@
|
|||
#include "interaction.h"
|
||||
#include "math.h"
|
||||
#include <math.h>
|
||||
|
||||
//#define WARN_NAN_OCCUR
|
||||
//#define WARN_CORRECTED_R_0
|
||||
|
||||
#define raise2(x) (x)*(x)
|
||||
|
||||
#define raise2(x) ((x)*(x))
|
||||
static float
|
||||
interaction_force_function
|
||||
( float r
|
||||
|
@ -29,6 +28,12 @@ interaction_force_function
|
|||
* 2 * (r - coefficients[18])
|
||||
* coefficients[17]
|
||||
* expf(coefficients[17] * raise2(r - coefficients[18]));
|
||||
// 1 / r^2 migth produce NaN, avoid that if the term is disabled
|
||||
// anyways.
|
||||
if(coefficients[19])
|
||||
{
|
||||
result += -2 * coefficients[19] / powf(r + coefficients[20], 3);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
static float
|
||||
|
@ -46,6 +51,12 @@ interaction_potential_function
|
|||
result += coefficients[10] * expf(coefficients[11] * (r - coefficients[12]));
|
||||
result += coefficients[13] * expf(coefficients[14] * raise2(r - coefficients[15]));
|
||||
result += coefficients[16] * expf(coefficients[17] * raise2(r - coefficients[18]));
|
||||
// 1 / r migth produce NaN, avoid that if the term is disabled
|
||||
// anyways.
|
||||
if(coefficients[19])
|
||||
{
|
||||
result += coefficients[19] / raise2(r + coefficients[20]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -99,6 +110,7 @@ interaction_ufunc_potential
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
interaction_ufunc_float2D
|
||||
( char ** args
|
||||
|
@ -122,7 +134,7 @@ interaction_ufunc_float2D
|
|||
, p_y_new_steps = steps[3];
|
||||
|
||||
float * coefficients = (float *) data;
|
||||
float dt = coefficients[19];
|
||||
float dt = coefficients[21];
|
||||
|
||||
// Compute the new momenta:
|
||||
|
||||
|
@ -214,7 +226,7 @@ static PyUFuncGenericFunction interaction_funcs[1] =
|
|||
typedef struct
|
||||
{
|
||||
PyObject_HEAD
|
||||
float coefficients[20];
|
||||
float coefficients[22];
|
||||
PyObject * ufunc;
|
||||
void *data[1];
|
||||
} interaction_UFuncWrapper;
|
||||
|
@ -243,14 +255,14 @@ interaction_UFuncWrapper_init
|
|||
return -1;
|
||||
}
|
||||
|
||||
if(PySequence_Size(coefficients) != 20)
|
||||
if(PySequence_Size(coefficients) != 22)
|
||||
{
|
||||
PyErr_SetString(PyExc_ValueError, "coefficients must have length 20");
|
||||
PyErr_SetString(PyExc_ValueError, "coefficients must have length 22");
|
||||
return -1;
|
||||
}
|
||||
|
||||
// copy the coefficients.
|
||||
for(i = 0; i < 20; i++)
|
||||
for(i = 0; i < 22; i++)
|
||||
{
|
||||
this_coefficient = PySequence_GetItem(coefficients, i);
|
||||
if(!this_coefficient)
|
||||
|
|
|
@ -9,6 +9,21 @@
|
|||
#include <numpy/ufuncobject.h>
|
||||
#include <stddef.h>
|
||||
|
||||
|
||||
static void
|
||||
interaction_ufunc_float2D
|
||||
( char ** args
|
||||
, npy_intp * dimensions
|
||||
, npy_intp * steps
|
||||
, void * data);
|
||||
|
||||
static void
|
||||
interaction_ufunc_force
|
||||
( char ** args
|
||||
, npy_intp * dimensions
|
||||
, npy_intp * steps
|
||||
, void * data);
|
||||
|
||||
/*
|
||||
* This is a quite generic force function mapping a
|
||||
* distance to the magnitude of a force. The coefficients
|
||||
|
@ -25,12 +40,10 @@ interaction_force_function
|
|||
( float r
|
||||
, float * coefficients);
|
||||
|
||||
static void
|
||||
interaction_ufunc_float2D
|
||||
( char ** args
|
||||
, npy_intp * dimensions
|
||||
, npy_intp * steps
|
||||
, void * data);
|
||||
static float
|
||||
interaction_potential_function
|
||||
( float r
|
||||
, float * coefficients);
|
||||
|
||||
static void
|
||||
interaction_ufunc_force
|
||||
|
@ -38,5 +51,10 @@ interaction_ufunc_force
|
|||
, npy_intp * dimensions
|
||||
, npy_intp * steps
|
||||
, void * data);
|
||||
|
||||
static void
|
||||
interaction_ufunc_potential
|
||||
( char ** args
|
||||
, npy_intp * dimensions
|
||||
, npy_intp * steps
|
||||
, void * data);
|
||||
#endif
|
||||
|
|
|
@ -10,7 +10,7 @@ c = np.array(
|
|||
, 1 # *c*exp(
|
||||
, -0.7 # c
|
||||
, 0 # (r - c))
|
||||
, 0 # + c*exp(
|
||||
, +5 # + c*exp(
|
||||
, -.1 # c
|
||||
, 2 # (r - c))
|
||||
, -0 # + c*exp(
|
||||
|
|
5
force.py
5
force.py
|
@ -4,10 +4,13 @@ import matplotlib.pyplot as plt
|
|||
|
||||
from coefficients import c
|
||||
|
||||
# This is the quite unreadable way to create
|
||||
# UFuncs with given parameters. FIXME: add this to another module.
|
||||
force_function = UFuncWrapper(0, c)
|
||||
potential_function = UFuncWrapper(2, c)
|
||||
|
||||
r = np.arange(0, 100, 0.02, dtype=np.float16)
|
||||
# Plot the force and potential.
|
||||
r = np.arange(0.01, 100, 0.02, dtype=np.float16)
|
||||
f, = plt.plot(r, force_function(r), label="force")
|
||||
p, = plt.plot(r, potential_function(r), label="potential")
|
||||
plt.legend(handles=[f, p])
|
||||
|
|
49
particles.py
49
particles.py
|
@ -11,23 +11,37 @@ from coefficients import c
|
|||
#force_function = UFuncWrapper(0, c)
|
||||
#interaction2D = UFuncWrapper(1, c)
|
||||
|
||||
# Borders for both the plot and the boundary condition
|
||||
# (the boundary condition might be deactivated, when creating
|
||||
# the BrownIterator).
|
||||
borders_x = [-100, 100]
|
||||
borders_y = [-100, 100]
|
||||
n_particles = 600
|
||||
n_particles = 60
|
||||
# Idk, seems to not do anyting.
|
||||
frames = 100
|
||||
spawn_restriction = 3
|
||||
dt = 0.1
|
||||
# Only spawn in 1/x of the borders.
|
||||
spawn_restriction = 2
|
||||
# Time resolution. Note that setting this to a too
|
||||
# high value (i.e. low resolution) will lead to
|
||||
# erratic behaviour, because potentials can be skipped.
|
||||
dt = 0.01
|
||||
c[-1] = dt
|
||||
|
||||
x_coords = np.random.uniform(borders_x[0] / spawn_restriction, borders_x[1] / spawn_restriction, n_particles).astype(np.float16)
|
||||
y_coords = np.random.uniform(borders_y[0] / spawn_restriction, borders_y[1] / spawn_restriction, n_particles).astype(np.float16)
|
||||
# Draw arrows, makes the simulation fucking slow.
|
||||
draw_arrows = True
|
||||
|
||||
# Initial positions.
|
||||
x_coords = np.random.uniform(borders_x[0] / spawn_restriction, borders_x[1] / spawn_restriction, n_particles).astype(np.float32)
|
||||
y_coords = np.random.uniform(borders_y[0] / spawn_restriction, borders_y[1] / spawn_restriction, n_particles).astype(np.float32)
|
||||
|
||||
|
||||
x_momenta = np.zeros(n_particles, dtype=np.float16)
|
||||
y_momenta = np.zeros(n_particles, dtype=np.float16)
|
||||
# Initial momenta are 0.
|
||||
x_momenta = np.zeros(n_particles, dtype=np.float32)
|
||||
y_momenta = np.zeros(n_particles, dtype=np.float32)
|
||||
|
||||
|
||||
|
||||
# Prepare the plot, remove axis & stuff.
|
||||
fig = plt.figure(figsize=(7, 7))
|
||||
ax = fig.add_axes([0, 0, 1, 1], frameon=False)
|
||||
ax.set_xlim(*borders_x)
|
||||
|
@ -35,28 +49,47 @@ ax.set_xticks([])
|
|||
ax.set_ylim(*borders_y)
|
||||
ax.set_yticks([])
|
||||
|
||||
# Plot the initial values.
|
||||
plot, = ax.plot(x_coords, y_coords, "b.")
|
||||
center_of_mass, = ax.plot(x_coords.mean(), y_coords.mean(), "r-")
|
||||
if(draw_arrows):
|
||||
arrows = [ plt.Arrow(x, y, dx, dy) for x, y, dx, dy in zip(x_coords, y_coords, x_momenta, y_momenta)]
|
||||
for arrow in arrows:
|
||||
ax.add_patch(arrow)
|
||||
|
||||
|
||||
# Keep track of the center of mass.
|
||||
center_of_mass_history_x = deque([x_coords.mean()])
|
||||
center_of_mass_history_y = deque([y_coords.mean()])
|
||||
|
||||
brown = BrownIterator(-1, c
|
||||
brown = BrownIterator(-1, c # Max iterations, simulation parameters.
|
||||
, x_coords, y_coords
|
||||
, y_momenta, y_momenta
|
||||
# The boundary condition: reflect at the borders,
|
||||
, borders_x, borders_y
|
||||
# or just let propagate to infinity.
|
||||
#, [], []
|
||||
# Let the border dampen the system, border_dampening < 1 => energy is absorbed.
|
||||
, border_dampening=1
|
||||
, dt=dt)
|
||||
|
||||
u = iter(brown)
|
||||
|
||||
def update(i):
|
||||
global arrows
|
||||
# Get the next set of positions.
|
||||
data = next(u)
|
||||
center_of_mass_history_x.append(x_coords.mean())
|
||||
center_of_mass_history_y.append(y_coords.mean())
|
||||
|
||||
plot.set_data(*data)
|
||||
center_of_mass.set_data(center_of_mass_history_x, center_of_mass_history_y)
|
||||
if(draw_arrows):
|
||||
for arrow in arrows:
|
||||
ax.patches.remove(arrow)
|
||||
arrows = [plt.Arrow(x, y, dx, dy) for x, y, dx, dy in zip(data[0], data[1], u.px, u.py)]
|
||||
for arrow in arrows:
|
||||
ax.add_patch(arrow)
|
||||
|
||||
animation = ani.FuncAnimation(fig, update, range(frames), interval=1)
|
||||
plt.show()
|
||||
|
|
|
@ -42,8 +42,10 @@ class BrownIterator(object):
|
|||
self.py = delta_py + self.py
|
||||
# XXX: We need the (-1)**i to make the problem
|
||||
# symmetric.
|
||||
# FIXME: is this necessary?
|
||||
self.px[np.isnan(self.px)] = self.speed_of_light * (-1)**self._i
|
||||
self.py[np.isnan(self.py)] = self.speed_of_light * (-1)**self._i
|
||||
|
||||
self._reflect_at_borders()
|
||||
|
||||
self.x += self.dt * self.px
|
||||
|
|
Loading…
Reference in New Issue
Block a user