added some useful comments
This commit is contained in:
parent
5a6e039e28
commit
da2fd89946
3
force.py
3
force.py
|
@ -4,9 +4,12 @@ import matplotlib.pyplot as plt
|
|||
|
||||
from coefficients import c
|
||||
|
||||
# This is the quite unreadable way to create
|
||||
# UFuncs with given parameters. FIXME: add this to another module.
|
||||
force_function = UFuncWrapper(0, c)
|
||||
potential_function = UFuncWrapper(2, c)
|
||||
|
||||
# Plot the force and potential.
|
||||
r = np.arange(0, 100, 0.02, dtype=np.float16)
|
||||
f, = plt.plot(r, force_function(r), label="force")
|
||||
p, = plt.plot(r, potential_function(r), label="potential")
|
||||
|
|
19
particles.py
19
particles.py
|
@ -11,23 +11,34 @@ from coefficients import c
|
|||
#force_function = UFuncWrapper(0, c)
|
||||
#interaction2D = UFuncWrapper(1, c)
|
||||
|
||||
# Borders for both the plot and the boundary condition
|
||||
# (the boundary condition might be deactivated, when creating
|
||||
# the BrownIterator).
|
||||
borders_x = [-100, 100]
|
||||
borders_y = [-100, 100]
|
||||
n_particles = 600
|
||||
# Idk, seems to not do anyting.
|
||||
frames = 100
|
||||
# Only spawn in 1/x of the borders.
|
||||
spawn_restriction = 3
|
||||
# Time resolution. Note that setting this to a too
|
||||
# high value (i.e. low resolution) will lead to
|
||||
# erratic behaviour, because potentials can be skipped.
|
||||
dt = 0.1
|
||||
c[-1] = dt
|
||||
|
||||
# Initial positions.
|
||||
x_coords = np.random.uniform(borders_x[0] / spawn_restriction, borders_x[1] / spawn_restriction, n_particles).astype(np.float16)
|
||||
y_coords = np.random.uniform(borders_y[0] / spawn_restriction, borders_y[1] / spawn_restriction, n_particles).astype(np.float16)
|
||||
|
||||
|
||||
# Initial momenta are 0.
|
||||
x_momenta = np.zeros(n_particles, dtype=np.float16)
|
||||
y_momenta = np.zeros(n_particles, dtype=np.float16)
|
||||
|
||||
|
||||
|
||||
# Prepare the plot, remove axis & stuff.
|
||||
fig = plt.figure(figsize=(7, 7))
|
||||
ax = fig.add_axes([0, 0, 1, 1], frameon=False)
|
||||
ax.set_xlim(*borders_x)
|
||||
|
@ -35,22 +46,28 @@ ax.set_xticks([])
|
|||
ax.set_ylim(*borders_y)
|
||||
ax.set_yticks([])
|
||||
|
||||
# Plot the initial values.
|
||||
plot, = ax.plot(x_coords, y_coords, "b.")
|
||||
center_of_mass, = ax.plot(x_coords.mean(), y_coords.mean(), "r-")
|
||||
# Keep track of the center of mass.
|
||||
center_of_mass_history_x = deque([x_coords.mean()])
|
||||
center_of_mass_history_y = deque([y_coords.mean()])
|
||||
|
||||
brown = BrownIterator(-1, c
|
||||
brown = BrownIterator(-1, c # Max iterations, simulation parameters.
|
||||
, x_coords, y_coords
|
||||
, y_momenta, y_momenta
|
||||
# The boundary condition: reflect at the borders,
|
||||
, borders_x, borders_y
|
||||
# or just let propagate to infinity.
|
||||
#, [], []
|
||||
# Let the border dampen the system, border_dampening < 1 => energy is absorbed.
|
||||
, border_dampening=1
|
||||
, dt=dt)
|
||||
|
||||
u = iter(brown)
|
||||
|
||||
def update(i):
|
||||
# Get the next set of positions.
|
||||
data = next(u)
|
||||
center_of_mass_history_x.append(x_coords.mean())
|
||||
center_of_mass_history_y.append(y_coords.mean())
|
||||
|
|
Loading…
Reference in New Issue
Block a user