bachelor_thesis/thesis/chapters/introduction_qc.tex
Daniel Knüttel 3519606f64 some work
Signed-off-by: Daniel Knüttel <daniel.knuettel@daknuett.eu>
2019-10-16 07:36:43 +02:00

82 lines
3.7 KiB
TeX

% vim: ft=tex
\section{Introduction to Binary Quantum Computing}
\subsection{Single Qbits}
A qbit is a two-level quantum mechanical system $ \{\ket{\uparrow} \equiv \ket{1}, \ket{\downarrow} \equiv \ket{0}\} $
with $\braket{\uparrow}{\downarrow} = 0$. One can associate
$\ket{\uparrow} \equiv \left(\begin{array}{c} 0 \\ 1\end{array} \right)$ and
$\ket{\downarrow} \equiv \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ which
is helpful in the following discussion.
A gate operating on a qbit is a unitary operator $G \in U(2)$. One can show that
$\forall G \in U(2)$ $G$ can be expressed as a product of unitary generator matrices,
common choices for the generators are $ X, H, R_{\phi}$ and $Z, H, R_{\phi}$ with
\label{ref:singleqbitgates}
$$X := \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right) $$
$$Z := \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right) $$
$$H := \frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1\end{array}\right) $$
$$R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right) $$
\subsection{$N$ Qbit Systems}
\label{ref:nqbitsystems}
A system of $N$ identical qbits is described by the kronecker product of the
single qbit states. A nice definition for this product is:
\begin{definition}
Let $M$, $N$ be complex matrices, $M = \left(\begin{array}{cc} M_1 & M_2 \\ M_3 & M_4 \end{array}\right)$
. Then the kronecker product is defined as
$$M \otimes N = \left(\begin{array}{cc} M_1 \otimes N & M_2 \otimes N \\ M_3 \otimes N & M_4 \otimes N \end{array}\right)$$
Where for any $c \in \mathbb{C}$ $ c \otimes N := cN$.
\end{definition}
\begin{postulate}
A $N$ qbit quantum mechanical state is the kronecker product of the $N$ single qbit
state.
\end{postulate}
Let $\ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ and $\ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$
be the basis of the one-qbit systems. Then two-qbit states are defined as
$$ \ket{0} := \ket{0b00} := \ket{0}_s \otimes \ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right)$$
$$ \ket{1} := \ket{0b01} := \ket{0}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right)$$
$$ \ket{2} := \ket{0b10} := \ket{1}_s \otimes \ket{0}_s := \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} \right)$$
$$ \ket{3} := \ket{0b11} := \ket{1}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right)$$
The $N$ qbit basis states can then be constructed in a similar manner.
A general $N$ qbit state can then be written as a superposition of the
basis states:
$$ \ket{\psi} = \sum\limits_{i = 0}^{2^N - 1} c_i \ket{i} $$
$$ \sum\limits_{i = 0}^{2^N - 1} |c_i|^2 = 1$$
One can show that the gates in \ref{ref:singleqbitgates} together with an entanglement gate, such as $CX$ or $CZ$ are enough
to generate an arbitrary $N$ qbit gate.
$$ CX(1, 0) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{array}\right)$$
$$ CZ(1, 0) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -1 \end{array}\right)$$
Where $1$ is the act-qbit and $0$ the control-qbit.
\subsection{Measurement}
\begin{postulate}
Let $\ket{\psi} = \alpha\ket{\phi_1} \otimes \ket{1}_n + \beta\ket{\phi_0} \otimes \ket{0}_n$ be a state
where $\ket{1}_n, \ket{0}_n$ denote the $n$-th qbit state and $|\alpha|^2 + |\beta|^2 = 1$.
Then the measurement of the $n$-th qbit will yield $\ket{\phi_1} \otimes \ket{1}_n$ with probability
$|\alpha|^2$ and $\ket{\phi_0} \otimes \ket{0}_n$ with probability $|\beta|^2$.
This is called collapse of the wave function.
\end{postulate}
Measuring a qbit will also yield a classical result $0$ or $1$ with the respective probabilities.