% vim: ft=tex \section{Introduction to Binary Quantum Computing} \subsection{Single Qbits} A qbit is a two-level quantum mechanical system $ \{\ket{\uparrow} \equiv \ket{1}, \ket{\downarrow} \equiv \ket{0}\} $ with $\braket{\uparrow}{\downarrow} = 0$. One can associate $\ket{\uparrow} \equiv \left(\begin{array}{c} 0 \\ 1\end{array} \right)$ and $\ket{\downarrow} \equiv \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ which is helpful in the following discussion. A gate operating on a qbit is a unitary operator $G \in U(2)$. One can show that $\forall G \in U(2)$ $G$ can be expressed as a product of unitary generator matrices, common choices for the generators are $ X, H, R_{\phi}$ and $Z, H, R_{\phi}$ with \label{ref:singleqbitgates} $$X := \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right) $$ $$Z := \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right) $$ $$H := \frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1\end{array}\right) $$ $$R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right) $$ \subsection{$N$ Qbit Systems} \label{ref:nqbitsystems} A system of $N$ identical qbits is described by the kronecker product of the single qbit states. A nice definition for this product is: \begin{definition} Let $M$, $N$ be complex matrices, $M = \left(\begin{array}{cc} M_1 & M_2 \\ M_3 & M_4 \end{array}\right)$ . Then the kronecker product is defined as $$M \otimes N = \left(\begin{array}{cc} M_1 \otimes N & M_2 \otimes N \\ M_3 \otimes N & M_4 \otimes N \end{array}\right)$$ Where for any $c \in \mathbb{C}$ $ c \otimes N := cN$. \end{definition} \begin{postulate} A $N$ qbit quantum mechanical state is the kronecker product of the $N$ single qbit state. \end{postulate} Let $\ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ and $\ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$ be the basis of the one-qbit systems. Then two-qbit states are defined as $$ \ket{0} := \ket{0b00} := \ket{0}_s \otimes \ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right)$$ $$ \ket{1} := \ket{0b01} := \ket{0}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right)$$ $$ \ket{2} := \ket{0b10} := \ket{1}_s \otimes \ket{0}_s := \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} \right)$$ $$ \ket{3} := \ket{0b11} := \ket{1}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right)$$ The $N$ qbit basis states can then be constructed in a similar manner. A general $N$ qbit state can then be written as a superposition of the basis states: $$ \ket{\psi} = \sum\limits_{i = 0}^{2^N - 1} c_i \ket{i} $$ $$ \sum\limits_{i = 0}^{2^N - 1} |c_i|^2 = 1$$ One can show that the gates in \ref{ref:singleqbitgates} together with an entanglement gate, such as $CX$ or $CZ$ are enough to generate an arbitrary $N$ qbit gate. $$ CX(1, 0) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{array}\right)$$ $$ CZ(1, 0) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -1 \end{array}\right)$$ Where $1$ is the act-qbit and $0$ the control-qbit. \subsection{Measurement} \begin{postulate} Let $\ket{\psi} = \alpha\ket{\phi_1} \otimes \ket{1}_n + \beta\ket{\phi_0} \otimes \ket{0}_n$ be a state where $\ket{1}_n, \ket{0}_n$ denote the $n$-th qbit state and $|\alpha|^2 + |\beta|^2 = 1$. Then the measurement of the $n$-th qbit will yield $\ket{\phi_1} \otimes \ket{1}_n$ with probability $|\alpha|^2$ and $\ket{\phi_0} \otimes \ket{0}_n$ with probability $|\beta|^2$. This is called collapse of the wave function. \end{postulate} Measuring a qbit will also yield a classical result $0$ or $1$ with the respective probabilities.