bachelor_thesis/presentation/main.tex

109 lines
3.0 KiB
TeX

\documentclass[10pt]{beamer}
\usepackage[utf8]{inputenc}
\usepackage{graphicx}
\usepackage{amssymb, amsthm}
\usepackage{setspace}
\usepackage{amsmath}
\usepackage{hyperref}
\usepackage{geometry}
\usepackage{enumerate}
\usepackage{physics}
\usepackage{listings}
%\usepackage{struktex}
\usepackage{qcircuit}
\newtheorem{definition}{Definition}
\newtheorem{postulate}{Postulate}
\newtheorem{corrolary}{Corrolary}
\newtheorem{lemma}{Lemma}
\newtheorem{theorem}{Theorem}
\usetheme[progressbar=frametitle]{metropolis}
\setbeamercolor{background canvas}{bg=white!20}
\title{An Efficient Quantum Computing Simulator using a Graphical Description for Many-Qbit Systems}
\subtitle{Simulation in the Stabilizer Formalism}
\author{Daniel Knüttel}
\date{21.02.2020}
\institute{Universität Regensburg}
\titlegraphic{\small\center Universität Regensburg\\
Faculty of the Institute of Theoretical Physics
\vspace{-11mm}\flushright\includegraphics[height=1.0cm]{logo.png}}
%\logo{\includegraphics[width=1cm]{logo.png}\hfill}
%\newcommand{\nologo}{\setbeamertemplate{logo}{}} % command to set the logo to nothing
%\newcommand{\congress}{Faculty of the Institute of Theoretical Physics}
%% footer
\makeatletter
\setbeamertemplate{footline}
{
%\leavevmode%
\hbox{%
\begin{beamercolorbox}[wd=.9\paperwidth,ht=2.25ex,dp=1ex,left]{Faculty of the Institute of Theoretical Physics}%
\end{beamercolorbox}%
\begin{beamercolorbox}[wd=.1\paperwidth,ht=2.25ex,dp=1ex,right]{Faculty of the Institute of Theoretical Physics}%
\insertframenumber{} / \inserttotalframenumber\hspace*{2ex}
\end{beamercolorbox}}%
}
\makeatother
\begin{document}
\maketitle
\section{Introduction}
{
\begin{frame}{Motivation}
\begin{itemize}
\item Some (physical) problems are classically hard to solve.
\item The quantum simulator: Mapping a hard problem to quantum hardware that can simulate this specific problem.
\item The (universal) quantum computer: able to simulate any unitary transformation on the system.
\end{itemize}
\end{frame}
}
{
\begin{frame}{Quantum Errors and Quantum Error Correction}
\begin{itemize}
\item Quantum systems at non-zero temperature often have dephasing effects and a finite population lifetime (relaxation).
\item Fault tolerant QC needs a way to correct for those errors.
\item Several strategies exist one important class of quantum error correction codes are \textbf{stabilizer codes}.
\end{itemize}
\end{frame}
}
\section{Binary Quantum Computing}
{
\begin{frame}{Qbits}
\begin{definition}
A qbit is a two-level quantum mechanical system $\ket{0}, \ket{1}$ with $\braket{0}{1} = 0$.
In the following $Z = \sigma_Z, X = \sigma_X, Y = \sigma_Y, I = \id$ will be used.
\end{definition}
Where $Z\ket{0} = +1\ket{0}$ and $Z\ket{1} = -1\ket{1}$.
\begin{postulate}
A $n$-qbit system is the tensor product of the single-qbit systems.
\end{postulate}
\end{frame}
}
\end{document}