\documentclass[10pt]{beamer} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage{amssymb, amsthm} \usepackage{setspace} \usepackage{amsmath} \usepackage{hyperref} \usepackage{geometry} \usepackage{enumerate} \usepackage{physics} \usepackage{listings} %\usepackage{struktex} \usepackage{qcircuit} \newtheorem{definition}{Definition} \newtheorem{postulate}{Postulate} \newtheorem{corrolary}{Corrolary} \newtheorem{lemma}{Lemma} \newtheorem{theorem}{Theorem} \usetheme[progressbar=frametitle]{metropolis} \setbeamercolor{background canvas}{bg=white!20} \title{An Efficient Quantum Computing Simulator using a Graphical Description for Many-Qbit Systems} \subtitle{Simulation in the Stabilizer Formalism} \author{Daniel Knüttel} \date{21.02.2020} \institute{Universität Regensburg} \titlegraphic{\small\center Universität Regensburg\\ Faculty of the Institute of Theoretical Physics \vspace{-11mm}\flushright\includegraphics[height=1.0cm]{logo.png}} %\logo{\includegraphics[width=1cm]{logo.png}\hfill} %\newcommand{\nologo}{\setbeamertemplate{logo}{}} % command to set the logo to nothing %\newcommand{\congress}{Faculty of the Institute of Theoretical Physics} %% footer \makeatletter \setbeamertemplate{footline} { %\leavevmode% \hbox{% \begin{beamercolorbox}[wd=.9\paperwidth,ht=2.25ex,dp=1ex,left]{Faculty of the Institute of Theoretical Physics}% \end{beamercolorbox}% \begin{beamercolorbox}[wd=.1\paperwidth,ht=2.25ex,dp=1ex,right]{Faculty of the Institute of Theoretical Physics}% \insertframenumber{} / \inserttotalframenumber\hspace*{2ex} \end{beamercolorbox}}% } \makeatother \begin{document} \maketitle \section{Introduction} { \begin{frame}{Motivation} \begin{itemize} \item Some (physical) problems are classically hard to solve. \item The quantum simulator: Mapping a hard problem to quantum hardware that can simulate this specific problem. \item The (universal) quantum computer: able to simulate any unitary transformation on the system. \end{itemize} \end{frame} } { \begin{frame}{Quantum Errors and Quantum Error Correction} \begin{itemize} \item Quantum systems at non-zero temperature often have dephasing effects and a finite population lifetime (relaxation). \item Fault tolerant QC needs a way to correct for those errors. \item Several strategies exist one important class of quantum error correction codes are \textbf{stabilizer codes}. \end{itemize} \end{frame} } \section{Binary Quantum Computing} { \begin{frame}{Qbits} \begin{definition} A qbit is a two-level quantum mechanical system $\ket{0}, \ket{1}$ with $\braket{0}{1} = 0$. In the following $Z = \sigma_Z, X = \sigma_X, Y = \sigma_Y, I = \id$ will be used. \end{definition} Where $Z\ket{0} = +1\ket{0}$ and $Z\ket{1} = -1\ket{1}$. \begin{postulate} A $n$-qbit system is the tensor product of the single-qbit systems. \end{postulate} \end{frame} } \end{document}