some work on the thesis

This commit is contained in:
Daniel Knüttel 2019-11-20 19:28:42 +01:00
parent ef901f46ca
commit d243e31253
2 changed files with 42 additions and 0 deletions

View File

@ -170,13 +170,54 @@ A graph state now represents the state by the gates that have been applied to it
\ket{+} := \bigotimes\limits_{i=0}^{n-1} H_i \ket{0} \ket{+} := \bigotimes\limits_{i=0}^{n-1} H_i \ket{0}
\end{equation} \end{equation}
\begin{definition}
\label{def:graph_state}
A graph state $\ket{G}$ is a 3-tuple $(V, E, O)$ where $(V = \{0, ..., n-1\}, E)$ is a graph with the vertices $V$, edges $E$ A graph state $\ket{G}$ is a 3-tuple $(V, E, O)$ where $(V = \{0, ..., n-1\}, E)$ is a graph with the vertices $V$, edges $E$
and vertex operators $O = \{o_i | i = 0, ..., n-1; o_i \in C_L \forall i\}$. The vertex operators and edges are defined and vertex operators $O = \{o_i | i = 0, ..., n-1; o_i \in C_L \forall i\}$. The vertex operators and edges are defined
by the following relation: by the following relation:
\begin{equation} \begin{equation}
\label{eq:g_state}
\ket{G} = \left(\bigotimes\limits_{i=0}^{n-1} o_i \right)\left(\bigotimes\limits_{\{i, j\} \in E} CZ_{i,j} \right) \ket{+} \ket{G} = \left(\bigotimes\limits_{i=0}^{n-1} o_i \right)\left(\bigotimes\limits_{\{i, j\} \in E} CZ_{i,j} \right) \ket{+}
\end{equation} \end{equation}
\end{definition}
One can show that any stabilizer state can be realized as a graph state (for instance in \cite{schlingenmann2001}).
\subsection{Operations on the Graph State}
\subsubsection{Single Qbit Gates}
Recalling \eqref{eq:g_state}
Makes it clear that for any single qbit gate $o \in C_L$ with $o^{(k)}$ being the gate
acting on qbit $k$ the state changes according to
\begin{equation}
\begin{aligned}
o^{(k)} \ket{G} &= o^{(k)} \left(\bigotimes\limits_{i=0}^{n-1} o_{i} \right)\left(\bigotimes\limits_{\{i, j\} \in E} CZ_{i,j} \right) \ket{+} \\
&= \left(\bigotimes\limits_{i=0}^{n-1} o^{\delta_{i,k}}o_{i} \right)\left(\bigotimes\limits_{\{i, j\} \in E} CZ_{i,j} \right)\ket{+}
\end{aligned}
\end{equation}
meaning that the graph state $(V, E, O)$ changes to $(V, E, \{o_0, ..., o_{k-1}, oo_k, o_{k+1}, ..., o_{n-1}\})$
as $C_L$ is almost a group the element $oo_k \in C_L$ up to a global phase that is disregarded. All the results
of $C_L \times C_L \rightarrow C_L, a,b \mapsto ab$ have been precomputed in a lookup table and the vertex operators
are updated according to that lookup table.
\subsubsection{Controlled Phase Gate}
Recalling \eqref{eq:g_state}
it is clear that some $CZ$ application is less trivial
than a single qbit gate.
%\begin{struktogramm}(100, 50)
% \ifthenelse[10]{1, 4}
% {Both Vertex operators Commute with CZ}{\sTrue}{\sFalse}
% \change
% \ifend
%\end{struktogramm}
\subsection{Graph Storage} \subsection{Graph Storage}

View File

@ -10,6 +10,7 @@
\usepackage{enumerate} \usepackage{enumerate}
\usepackage{physics} \usepackage{physics}
\usepackage{listings} \usepackage{listings}
\usepackage{struktex}
\geometry{left=2.5cm,right=2.5cm,top=2.5cm,bottom=2.5cm} \geometry{left=2.5cm,right=2.5cm,top=2.5cm,bottom=2.5cm}