From d243e31253a025b002f96950aa87ef56b0970a74 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Daniel=20Kn=C3=BCttel?= Date: Wed, 20 Nov 2019 19:28:42 +0100 Subject: [PATCH] some work on the thesis --- thesis/chapters/graph_simulator.tex | 41 +++++++++++++++++++++++++++++ thesis/main.tex | 1 + 2 files changed, 42 insertions(+) diff --git a/thesis/chapters/graph_simulator.tex b/thesis/chapters/graph_simulator.tex index 975e40c..4ac9723 100644 --- a/thesis/chapters/graph_simulator.tex +++ b/thesis/chapters/graph_simulator.tex @@ -170,13 +170,54 @@ A graph state now represents the state by the gates that have been applied to it \ket{+} := \bigotimes\limits_{i=0}^{n-1} H_i \ket{0} \end{equation} +\begin{definition} +\label{def:graph_state} + A graph state $\ket{G}$ is a 3-tuple $(V, E, O)$ where $(V = \{0, ..., n-1\}, E)$ is a graph with the vertices $V$, edges $E$ and vertex operators $O = \{o_i | i = 0, ..., n-1; o_i \in C_L \forall i\}$. The vertex operators and edges are defined by the following relation: \begin{equation} + \label{eq:g_state} \ket{G} = \left(\bigotimes\limits_{i=0}^{n-1} o_i \right)\left(\bigotimes\limits_{\{i, j\} \in E} CZ_{i,j} \right) \ket{+} \end{equation} +\end{definition} + +One can show that any stabilizer state can be realized as a graph state (for instance in \cite{schlingenmann2001}). + +\subsection{Operations on the Graph State} + +\subsubsection{Single Qbit Gates} + +Recalling \eqref{eq:g_state} +Makes it clear that for any single qbit gate $o \in C_L$ with $o^{(k)}$ being the gate +acting on qbit $k$ the state changes according to + + +\begin{equation} + \begin{aligned} + o^{(k)} \ket{G} &= o^{(k)} \left(\bigotimes\limits_{i=0}^{n-1} o_{i} \right)\left(\bigotimes\limits_{\{i, j\} \in E} CZ_{i,j} \right) \ket{+} \\ + &= \left(\bigotimes\limits_{i=0}^{n-1} o^{\delta_{i,k}}o_{i} \right)\left(\bigotimes\limits_{\{i, j\} \in E} CZ_{i,j} \right)\ket{+} + \end{aligned} +\end{equation} + +meaning that the graph state $(V, E, O)$ changes to $(V, E, \{o_0, ..., o_{k-1}, oo_k, o_{k+1}, ..., o_{n-1}\})$ +as $C_L$ is almost a group the element $oo_k \in C_L$ up to a global phase that is disregarded. All the results +of $C_L \times C_L \rightarrow C_L, a,b \mapsto ab$ have been precomputed in a lookup table and the vertex operators +are updated according to that lookup table. + +\subsubsection{Controlled Phase Gate} + +Recalling \eqref{eq:g_state} +it is clear that some $CZ$ application is less trivial +than a single qbit gate. + +%\begin{struktogramm}(100, 50) +% \ifthenelse[10]{1, 4} +% {Both Vertex operators Commute with CZ}{\sTrue}{\sFalse} +% \change +% \ifend +%\end{struktogramm} \subsection{Graph Storage} diff --git a/thesis/main.tex b/thesis/main.tex index 74aea51..beda6df 100644 --- a/thesis/main.tex +++ b/thesis/main.tex @@ -10,6 +10,7 @@ \usepackage{enumerate} \usepackage{physics} \usepackage{listings} +\usepackage{struktex} \geometry{left=2.5cm,right=2.5cm,top=2.5cm,bottom=2.5cm}