some work on the thesis
This commit is contained in:
parent
ef901f46ca
commit
d243e31253
|
@ -170,13 +170,54 @@ A graph state now represents the state by the gates that have been applied to it
|
||||||
\ket{+} := \bigotimes\limits_{i=0}^{n-1} H_i \ket{0}
|
\ket{+} := \bigotimes\limits_{i=0}^{n-1} H_i \ket{0}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
\label{def:graph_state}
|
||||||
|
|
||||||
A graph state $\ket{G}$ is a 3-tuple $(V, E, O)$ where $(V = \{0, ..., n-1\}, E)$ is a graph with the vertices $V$, edges $E$
|
A graph state $\ket{G}$ is a 3-tuple $(V, E, O)$ where $(V = \{0, ..., n-1\}, E)$ is a graph with the vertices $V$, edges $E$
|
||||||
and vertex operators $O = \{o_i | i = 0, ..., n-1; o_i \in C_L \forall i\}$. The vertex operators and edges are defined
|
and vertex operators $O = \{o_i | i = 0, ..., n-1; o_i \in C_L \forall i\}$. The vertex operators and edges are defined
|
||||||
by the following relation:
|
by the following relation:
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
\label{eq:g_state}
|
||||||
\ket{G} = \left(\bigotimes\limits_{i=0}^{n-1} o_i \right)\left(\bigotimes\limits_{\{i, j\} \in E} CZ_{i,j} \right) \ket{+}
|
\ket{G} = \left(\bigotimes\limits_{i=0}^{n-1} o_i \right)\left(\bigotimes\limits_{\{i, j\} \in E} CZ_{i,j} \right) \ket{+}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
One can show that any stabilizer state can be realized as a graph state (for instance in \cite{schlingenmann2001}).
|
||||||
|
|
||||||
|
\subsection{Operations on the Graph State}
|
||||||
|
|
||||||
|
\subsubsection{Single Qbit Gates}
|
||||||
|
|
||||||
|
Recalling \eqref{eq:g_state}
|
||||||
|
Makes it clear that for any single qbit gate $o \in C_L$ with $o^{(k)}$ being the gate
|
||||||
|
acting on qbit $k$ the state changes according to
|
||||||
|
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
o^{(k)} \ket{G} &= o^{(k)} \left(\bigotimes\limits_{i=0}^{n-1} o_{i} \right)\left(\bigotimes\limits_{\{i, j\} \in E} CZ_{i,j} \right) \ket{+} \\
|
||||||
|
&= \left(\bigotimes\limits_{i=0}^{n-1} o^{\delta_{i,k}}o_{i} \right)\left(\bigotimes\limits_{\{i, j\} \in E} CZ_{i,j} \right)\ket{+}
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
meaning that the graph state $(V, E, O)$ changes to $(V, E, \{o_0, ..., o_{k-1}, oo_k, o_{k+1}, ..., o_{n-1}\})$
|
||||||
|
as $C_L$ is almost a group the element $oo_k \in C_L$ up to a global phase that is disregarded. All the results
|
||||||
|
of $C_L \times C_L \rightarrow C_L, a,b \mapsto ab$ have been precomputed in a lookup table and the vertex operators
|
||||||
|
are updated according to that lookup table.
|
||||||
|
|
||||||
|
\subsubsection{Controlled Phase Gate}
|
||||||
|
|
||||||
|
Recalling \eqref{eq:g_state}
|
||||||
|
it is clear that some $CZ$ application is less trivial
|
||||||
|
than a single qbit gate.
|
||||||
|
|
||||||
|
%\begin{struktogramm}(100, 50)
|
||||||
|
% \ifthenelse[10]{1, 4}
|
||||||
|
% {Both Vertex operators Commute with CZ}{\sTrue}{\sFalse}
|
||||||
|
% \change
|
||||||
|
% \ifend
|
||||||
|
%\end{struktogramm}
|
||||||
|
|
||||||
\subsection{Graph Storage}
|
\subsection{Graph Storage}
|
||||||
|
|
||||||
|
|
|
@ -10,6 +10,7 @@
|
||||||
\usepackage{enumerate}
|
\usepackage{enumerate}
|
||||||
\usepackage{physics}
|
\usepackage{physics}
|
||||||
\usepackage{listings}
|
\usepackage{listings}
|
||||||
|
\usepackage{struktex}
|
||||||
|
|
||||||
\geometry{left=2.5cm,right=2.5cm,top=2.5cm,bottom=2.5cm}
|
\geometry{left=2.5cm,right=2.5cm,top=2.5cm,bottom=2.5cm}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user