some fixos
This commit is contained in:
parent
ba73d1a449
commit
bbbac43c82
|
@ -486,10 +486,10 @@
|
|||
To compute the probability to measure a result of $s=0$ one can use the trace formula
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
P(s=0) &= \Tr(\frac{I + g_a}{2} \ket{\psi}\bra{\psi}) \\
|
||||
&= \Tr(\frac{I + g_a}{2} S^{(j)} \ket{\psi}\bra{\psi}) \\
|
||||
&= \Tr(S^{(j)}\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\
|
||||
&= \Tr(\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\
|
||||
P(s=0) &= \left|\Tr(\frac{I + g_a}{2} \ket{\psi}\bra{\psi})\right| \\
|
||||
&= \left|\Tr(\frac{I + g_a}{2} S^{(j)} \ket{\psi}\bra{\psi})\right| \\
|
||||
&= \left|\Tr(S^{(j)}\frac{I - g_a}{2} \ket{\psi}\bra{\psi})\right| \\
|
||||
&= \left|\Tr(\frac{I - g_a}{2} \ket{\psi}\bra{\psi})\right| \\
|
||||
&= P(s=1)\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
@ -498,7 +498,6 @@
|
|||
trace and absorbed into the $\bra{\psi}$.
|
||||
}
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
}
|
||||
|
||||
|
@ -773,19 +772,26 @@
|
|||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
P_a \ket{G} &= \left(\prod\limits{i \neq a} o_i\right) P_a o_a \ket{\bar{G}} \\
|
||||
&= \left(\prod\limits{i \neq a} o_i\right) o_a o_a^\dagger P_a o_a \ket{\bar{G}} \\
|
||||
&= \left(\prod\limits{i} o_i \right) \tilde{P}_a \ket{\bar{G}}\\
|
||||
P_a \ket{G} &= \left(\prod\limits_{i \neq a} o_i\right) P_a o_a \ket{\bar{G}} \\
|
||||
&= \left(\prod\limits_{i \neq a} o_i\right) o_a o_a^\dagger P_a o_a \ket{\bar{G}} \\
|
||||
&= \left(\prod\limits_{i} o_i \right) \tilde{P}_a \ket{\bar{G}}\\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
With a new projector $\tilde{P}_a = \frac{I + g_a}{2}$.
|
||||
}
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
}
|
||||
{
|
||||
\begin{frame}{Measurements on Graph States}
|
||||
\begin{itemize}
|
||||
\item{The anticommuting stabilizers are given by
|
||||
\begin{itemize}
|
||||
\item{$A_X = \{K_G^{(i)} | i \in n_a\}$ for $g_a = \pm X_a$,}
|
||||
\item{$A_Y = \{K_G^{(i)} | i \in n_a \cup a\}$ for $g_a = \pm Y_a$ and}
|
||||
\item{$A_Z = \{K_G^{(a)}$ for $g_a = Z_a$.}
|
||||
\item{$A_Y = \{K_G^{(i)} | i \in n_a \cup \{a\}\}$ for $g_a = \pm Y_a$ and}
|
||||
\item{$A_Z = \{K_G^{(a)}\}$ for $g_a = \pm Z_a$.}
|
||||
\end{itemize}}
|
||||
\item{This can be used to compute the probability amplitudes and update $(G,V,E)$ after
|
||||
the measurement.}
|
||||
|
|
Loading…
Reference in New Issue
Block a user