From bbbac43c826844ac5f560f968a803336ef9be1bc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Daniel=20Kn=C3=BCttel?= Date: Wed, 11 Mar 2020 10:48:51 +0100 Subject: [PATCH] some fixos --- presentation/main.tex | 26 ++++++++++++++++---------- 1 file changed, 16 insertions(+), 10 deletions(-) diff --git a/presentation/main.tex b/presentation/main.tex index f462672..43d330c 100644 --- a/presentation/main.tex +++ b/presentation/main.tex @@ -486,10 +486,10 @@ To compute the probability to measure a result of $s=0$ one can use the trace formula \begin{equation} \begin{aligned} - P(s=0) &= \Tr(\frac{I + g_a}{2} \ket{\psi}\bra{\psi}) \\ - &= \Tr(\frac{I + g_a}{2} S^{(j)} \ket{\psi}\bra{\psi}) \\ - &= \Tr(S^{(j)}\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\ - &= \Tr(\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\ + P(s=0) &= \left|\Tr(\frac{I + g_a}{2} \ket{\psi}\bra{\psi})\right| \\ + &= \left|\Tr(\frac{I + g_a}{2} S^{(j)} \ket{\psi}\bra{\psi})\right| \\ + &= \left|\Tr(S^{(j)}\frac{I - g_a}{2} \ket{\psi}\bra{\psi})\right| \\ + &= \left|\Tr(\frac{I - g_a}{2} \ket{\psi}\bra{\psi})\right| \\ &= P(s=1)\\ \end{aligned} \end{equation} @@ -498,7 +498,6 @@ trace and absorbed into the $\bra{\psi}$. } \end{itemize} - \end{frame} } @@ -773,19 +772,26 @@ \begin{equation} \begin{aligned} - P_a \ket{G} &= \left(\prod\limits{i \neq a} o_i\right) P_a o_a \ket{\bar{G}} \\ - &= \left(\prod\limits{i \neq a} o_i\right) o_a o_a^\dagger P_a o_a \ket{\bar{G}} \\ - &= \left(\prod\limits{i} o_i \right) \tilde{P}_a \ket{\bar{G}}\\ + P_a \ket{G} &= \left(\prod\limits_{i \neq a} o_i\right) P_a o_a \ket{\bar{G}} \\ + &= \left(\prod\limits_{i \neq a} o_i\right) o_a o_a^\dagger P_a o_a \ket{\bar{G}} \\ + &= \left(\prod\limits_{i} o_i \right) \tilde{P}_a \ket{\bar{G}}\\ \end{aligned} \end{equation} With a new projector $\tilde{P}_a = \frac{I + g_a}{2}$. } + \end{itemize} + +\end{frame} +} +{ +\begin{frame}{Measurements on Graph States} + \begin{itemize} \item{The anticommuting stabilizers are given by \begin{itemize} \item{$A_X = \{K_G^{(i)} | i \in n_a\}$ for $g_a = \pm X_a$,} - \item{$A_Y = \{K_G^{(i)} | i \in n_a \cup a\}$ for $g_a = \pm Y_a$ and} - \item{$A_Z = \{K_G^{(a)}$ for $g_a = Z_a$.} + \item{$A_Y = \{K_G^{(i)} | i \in n_a \cup \{a\}\}$ for $g_a = \pm Y_a$ and} + \item{$A_Z = \{K_G^{(a)}\}$ for $g_a = \pm Z_a$.} \end{itemize}} \item{This can be used to compute the probability amplitudes and update $(G,V,E)$ after the measurement.}