some work
This commit is contained in:
parent
09a7e29f43
commit
ba3bc532b7
|
@ -21,19 +21,13 @@ common choices for the generators are $ X, H, R_{\phi}$ and $Z, H, R_{\phi}$ wit
|
||||||
\label{ref:singleqbitgates}
|
\label{ref:singleqbitgates}
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
X := \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right)
|
\begin{aligned}
|
||||||
\end{equation}
|
& X := \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right) \\
|
||||||
\begin{equation}
|
& Z := \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right) \\
|
||||||
Z := \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right)
|
& H := \frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1\end{array}\right) \\
|
||||||
\end{equation}
|
& R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right)\\
|
||||||
\begin{equation}
|
& I := \left(\begin{array}{cc} 1 & 0 \\ 0 & 1\end{array}\right) \\
|
||||||
H := \frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1\end{array}\right)
|
\end{aligned}
|
||||||
\end{equation}
|
|
||||||
\begin{equation}
|
|
||||||
R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right)
|
|
||||||
\end{equation}
|
|
||||||
\begin{equation}
|
|
||||||
I := \left(\begin{array}{cc} 1 & 0 \\ 0 & 1\end{array}\right)
|
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
Note that $X = HZH$ and $Z = R_{\pi}$, so the set of $H, R_\phi$ is sufficient.
|
Note that $X = HZH$ and $Z = R_{\pi}$, so the set of $H, R_\phi$ is sufficient.
|
||||||
|
@ -47,6 +41,20 @@ transforming to the other Pauli eigenstates is done using $H$ and $SH$:
|
||||||
S H Z H^\dagger S^\dagger = S X S^\dagger = Y
|
S H Z H^\dagger S^\dagger = S X S^\dagger = Y
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
The following states are the $\pm 1$ eigenstates of the $X$, $Y$, $Z$ operators
|
||||||
|
and will be used in some calculations later.
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
&\ket{+_X} \equiv \ket{+} := \frac{1}{\sqrt{2}} (\ket{0} + \ket{1}) \\
|
||||||
|
&\ket{-_X} \equiv \ket{-} := \frac{1}{\sqrt{2}} (\ket{0} - \ket{1}) \\
|
||||||
|
&\ket{+_Y} := \frac{1}{\sqrt{2}} (\ket{0} + i\ket{1}) \\
|
||||||
|
&\ket{-_Y} := \frac{1}{\sqrt{2}} (\ket{0} - i\ket{1}) \\
|
||||||
|
&\ket{+_Z} := \ket{0} \\
|
||||||
|
&\ket{-_Z} := \ket{1} \\
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
\subsubsection{Many Qbits}
|
\subsubsection{Many Qbits}
|
||||||
|
|
||||||
\begin{postulate}
|
\begin{postulate}
|
||||||
|
@ -130,8 +138,6 @@ matrices to the basis states)
|
||||||
|
|
||||||
\subsubsection{Measurements}
|
\subsubsection{Measurements}
|
||||||
|
|
||||||
\textbf{FIXME} I don't like this at all.
|
|
||||||
|
|
||||||
\begin{postulate}
|
\begin{postulate}
|
||||||
Let
|
Let
|
||||||
$$\ket{\psi} = \alpha\ket{\phi_1} \otimes \ket{1}_j + \beta\ket{\phi_0} \otimes \ket{0}_j$$
|
$$\ket{\psi} = \alpha\ket{\phi_1} \otimes \ket{1}_j + \beta\ket{\phi_0} \otimes \ket{0}_j$$
|
||||||
|
@ -145,6 +151,9 @@ matrices to the basis states)
|
||||||
\end{postulate}
|
\end{postulate}
|
||||||
|
|
||||||
Measuring a qbit will also yield a classical result $0$ or $1$ with the respective probabilities.
|
Measuring a qbit will also yield a classical result $0$ or $1$ with the respective probabilities.
|
||||||
|
Measurements are always performed in the computational basis, i.e. for a qbit
|
||||||
|
$i$ $Z_i$ is measured. With the eigenstate of the $+1$ eigenvalue being the $\ket{0}$
|
||||||
|
and $\ket{1}$ for the $-1$ eigenvalue of $Z$.
|
||||||
|
|
||||||
\begin{corrolary}
|
\begin{corrolary}
|
||||||
In general the measurement of a qbit is not invertible, in particular it cannot be represented as a
|
In general the measurement of a qbit is not invertible, in particular it cannot be represented as a
|
||||||
|
@ -162,27 +171,31 @@ As a measurement is not unitary it is not a gate as in the definition above.
|
||||||
In the following discussion the term \textit{measurement gate} will be used from time
|
In the following discussion the term \textit{measurement gate} will be used from time
|
||||||
to time as a measurement can be treated similarely while doing numerics.
|
to time as a measurement can be treated similarely while doing numerics.
|
||||||
|
|
||||||
Measurements are always performed in the computational basis, i.e. for a qbit
|
|
||||||
$i$ $Z_i$ is measured. Let the state to be measured be
|
|
||||||
|
|
||||||
\begin{equation}
|
|
||||||
\ket{\psi} = \alpha\ket{0}\otimes\ket{\psi_0} + \beta\ket{1}\otimes\ket{\psi_1}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
then a result $0$ is measured with probability $|\alpha|^2$ and $1$ with probability
|
|
||||||
$|\beta|^2 = 1 - |\alpha|^2$. The wave function is then collapsed to
|
|
||||||
|
|
||||||
\begin{equation}
|
|
||||||
\begin{aligned}
|
|
||||||
\ket{\psi'} = \left\{\begin{array}{c}\ket{0}\otimes\ket{\psi_0}, \mbox{ for a result 0 } \\
|
|
||||||
\ket{1}\otimes\ket{\psi_1}, \mbox{ for a result 1 }
|
|
||||||
\end{array}\right\}
|
|
||||||
\end{aligned}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\subsection{Quantum Circuits}
|
\subsection{Quantum Circuits}
|
||||||
|
|
||||||
Quantum circuits are a simple and well-readable way to express the application
|
\textbf{FIXME: citation needed}
|
||||||
of several gates on a state.
|
|
||||||
|
|
||||||
\textbf{TODO}
|
Quantum circuits are a simple and well-readable way to express the application
|
||||||
|
of several gates on a state. Qbits are represented by horizontal line on which
|
||||||
|
time goes from left to right. On these lines single qbit gates are
|
||||||
|
represented by a box:
|
||||||
|
|
||||||
|
\[
|
||||||
|
\Qcircuit @C=1em @R=.7em {
|
||||||
|
& \gate{H} & \gate{X} & \gate{Z} &\qw \\
|
||||||
|
}
|
||||||
|
\]
|
||||||
|
|
||||||
|
The controlled gates (such as $CX$ and $CZ$) have a vertical line from the control qbit to
|
||||||
|
the gate, for instance the circuit for $CZ_{2, 1}CX_{2,0}$ is
|
||||||
|
|
||||||
|
\[
|
||||||
|
\Qcircuit @C=1em @R=.7em {
|
||||||
|
& \qw & \ctrl{2} & \qw & \qw &\qw \\
|
||||||
|
& \qw & \qw & \qw & \ctrl{1} &\qw \\
|
||||||
|
& \qw & \gate{X} & \qw & \gate{Z} &\qw \\
|
||||||
|
}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\textbf{TODO: more info about quantum circuits}
|
||||||
|
|
|
@ -14,3 +14,107 @@ performance has since been improved to $n\log(n)$ time on average \cite{andersbr
|
||||||
|
|
||||||
\subsection{Stabilizers and Stabilizer States}
|
\subsection{Stabilizers and Stabilizer States}
|
||||||
|
|
||||||
|
\subsubsection{Local Pauli Group and Multilocal Pauli Group}
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
\begin{equation}
|
||||||
|
P := \{\pm 1, \pm i\} \cdot \{I, X, Y, Z\}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Is called the Pauli group.
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
The group property of $P$ can be verified easily. Note that
|
||||||
|
the elements of $P$ either commute or anticommute.
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
For $n$ qbits
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
P_n := \{\bigotimes\limits_{i=0}^{n-1} p_i | p_i \in P\}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
is called the multilocal Pauli group on $n$ qbits.
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
The group property of $P_n$ follows directly from its definition
|
||||||
|
via the tensor product as do the (anti-)commutator relationships.
|
||||||
|
Further are $p \in P_n$ hermitian and have the eigenvalues $\pm 1$ for
|
||||||
|
$p \neq \pm I$, $+1$ for $p = I$ and $-1$ for $p = -I$.
|
||||||
|
|
||||||
|
\subsubsection{Stabilizers}
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
\label{def:stabilizer}
|
||||||
|
An abelian subgroup $S = \{S^{(0)}, ..., S^{(N)}\}$ of $P_n$ is called a set of stabilizers iff
|
||||||
|
\begin{enumerate}
|
||||||
|
\item{$\forall i,j = 1, ..., N$ $[S^{(i)}, S^{(j)}] = 0$ $S^{(i)}$ and $S^{(j)}$ commute}
|
||||||
|
\item{$-I \notin S$}
|
||||||
|
\end{enumerate}
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
\begin{lemma}
|
||||||
|
If $S$ is a set of stabilizers, the following statements are follow
|
||||||
|
directly
|
||||||
|
|
||||||
|
\begin{enumerate}
|
||||||
|
\item{$\pm iI \notin S$}
|
||||||
|
\item{$(S^{(i)})^2 = I$ for all $i$}
|
||||||
|
\item{$S^{(i)}$ are hermitian for all $i$}
|
||||||
|
\end{enumerate}
|
||||||
|
\end{lemma}
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
\begin{enumerate}
|
||||||
|
\item{$(iI)^2 = (-iI)^2 = -I$. Which contradicts the definition of $S$.}
|
||||||
|
\item{From the definition of $S$ ($G_n$ respectively) follows that any
|
||||||
|
$S^{(i)} \in S$ has the form $\pm i^l (\bigotimes\limits_{j=0}^{n-1} \tilde{p}_j)$ where
|
||||||
|
$\tilde{p}_j \in \{X, Y, Z, I\}$ and $l \in \{0, 1\}$. As $(\bigotimes\limits_{j=0}^{n-1} \tilde{p}_j)$
|
||||||
|
is hermitian $(S^{(i)})^2$ is either $+I$ or $-I$. As $-I \notin S$ $(S^{(i)})^2 = I$ follows directly.
|
||||||
|
}
|
||||||
|
\item{Following the argumentation above $(S^{(i)})^2 = -I \Leftrightarrow l=1$
|
||||||
|
therefore $(S^{(i)})^2 = -I \Leftrightarrow (S^{(i)})^\dagger \neq (S^{(i)})$.}
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
As considering all elements of a group can be unpractical for some calculations
|
||||||
|
the generators of a group are introduced. It is usually enough to discuss the generator's
|
||||||
|
properties to understand the properties of the group.
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
For a finite group $G$ and some $m \in \mathbb{N}$ one denotes the generators
|
||||||
|
of G
|
||||||
|
|
||||||
|
$$ \langle g_1, ..., g_m \rangle \equiv \langle g_i \rangle_{i=1,...,m}$$
|
||||||
|
|
||||||
|
where $g_i \in G$, every element in $G$ can be written as a product of the $g_i$
|
||||||
|
and $m$ is the smallest integer for which these statements hold.
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
In the following discussions $\rangle S^{(i)} \rangle_{i=0, ..., n-1}$ will be used as
|
||||||
|
the properties of a set of stabilizers that are used in the discussions can be studied using only its
|
||||||
|
generators.
|
||||||
|
|
||||||
|
\subsubsection{Stabilizer States}
|
||||||
|
|
||||||
|
One important basic property of quantum mechanics is that hermitian operators have real eigenvalues
|
||||||
|
and eigenspaces associated with these eigenvalues. Finding these eigenvalues and eigenvectors
|
||||||
|
is what one calls solving a quantum mechanical system. One of the most fundamental insights of
|
||||||
|
quantum mechanics is that operators that commute have a common set of eigenvectors, i.e. they
|
||||||
|
can be diagonalized simultaneously. This motivates and justifies the following definition
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
For a set of stabilizers $S$ the vector space
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
V_S := \{\ket{\psi} | S^{(i)}\ket{\psi} = +1\ket{\psi} \forall S^{(i)} \in S\}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
is called the space of stabilizer states associated with $S$ and one says
|
||||||
|
$\ket{\psi}$ is stabilized by $S$.
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
It is clear that it is sufficient to show the stabilization property for the generators of
|
||||||
|
$S$, as all the generators forming an element in $S$ can be absorbed into $\ket{\psi}$.
|
||||||
|
The dimension of $V_S$ is not immediately
|
||||||
|
|
Loading…
Reference in New Issue
Block a user