fixed one proof

This commit is contained in:
Daniel Knüttel 2020-03-20 12:30:41 +01:00
parent b4be315a01
commit b304d0bf80

View File

@ -363,45 +363,87 @@ graph.
\end{equation}
\end{lemma}
\begin{proof}
FIXME: This
The proof is done using mathematical induction over the edges $\{i,j\} \in
E$. A similar proof can be found in \cite{hein_eisert_briegel2008}.
\textbf{Base Case:} If $E = \{\}$ the stabilizers are $K_G^{(i)} = X_i$
and stabilize the state $\ket{+}$.
\textbf{Inductive Step:} Let $G' := (V, E \setminus \{\{l,j\}\})$.
By the induction hypothesis the state $\ket{\bar{G}'}$ is stabilized
by $K_{G'}^{(i)}$. Applying a $CZ_{l,j}$ to the state $\ket{\bar{G}'}$
now transforms the stabilizers to
Let $\ket{+} := \left(\prod\limits_{l \in V} H_l\right) \ket{0}$ as before.
Note that for any $X_i$: $X_i \ket{+} = +1 \ket{+}$. In the following
discussion the direction $\prod\limits_{\{l,k\} \in E} :=
\prod\limits_{\{l,k\} \in E, l < k}$ is introduced as the graph is
undirected and edges must not be handled twice. Set $\ket{\tilde{G}} :=
\left(\prod\limits_{\{l,k\} \in E} CZ_{l,k} \right)\ket{+}$.
\begin{equation}
\begin{aligned}
K_G^{(i)} \ket{\tilde{G}}
& = X_i \left(\prod\limits_{\{i,j\} \in E} Z_j\right)
\left(\prod\limits_{\{l,k\} \in E} CZ_{l,k} \right) \ket{+} \\
& = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)X_i\prod\limits_{\{l,k\} \in E}
\left( \ket{0}\bra{0}_k \otimes I_l + \ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\
& = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)\prod\limits_{\{l,k\} \in E}
\left( \ket{0}\bra{0}_k \otimes I_l + (-1)^{\delta_{i,l}}\ket{1}\bra{1}_k \otimes Z_l\right) X_i \ket{+} \\
\end{aligned}
\begin{aligned}
S^{(i)} &= CZ_{l,j} K_{G'}^{(i)} CZ_{l,j}.\\
\end{aligned}
\end{equation}
As $X,Z$ anticommute. $X_i$ can now be absorbed into $\ket{+}$. The next
step is a bit tricky: A $Z_j$ can be absorbed into a $\ket{0}\bra{0}_j$
giving no phase or into a $\ket{1}\bra{1}_j$ yielding a phase of $-1$. If
there is no projector on $j$ the $Z_j$ can be commuted to the next
projector. It is guaranteed that a projector on $j$ exists by the
definition of $\ket{\tilde{G}}$.
Note that $CZ_{l,j}$ commutes with $K_{G'}^{(i)}$ for $l \neq i \neq j$.
Further $CZ_{l,j} = CZ_{j,l}$. Consider now the case $l = i$:
\begin{equation}
\begin{aligned}
K_G^{(i)} \ket{\tilde{G}}
& = \prod\limits_{\{l,k\} \in E}\left( \ket{0}\bra{0}_k \otimes I_l + (-1)^{\delta_{i,l} + \delta_{j,k}}\ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\
& = \prod\limits_{\{l,k\} \in E}\left( \ket{0}\bra{0}_k \otimes I_l + \ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\
& = +1 \ket{\tilde{G}}
\end{aligned}
\begin{aligned}
S^{(i)} &= CZ_{i,j} K_{G'}^{(i)} CZ_{i,j} \\
&= \left( \ket{1}\bra{1}_j \otimes Z_i + \ket{0}\bra{0}_j \otimes I_i \right)
X_i \prod\limits_{l \in n'_i} Z_l
\left( \ket{1}\bra{1}_j \otimes Z_i + \ket{0}\bra{0}_j \otimes I_i \right)\\
&= \left(\ket{1}\bra{1}_j \otimes Z_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{1}\bra{1}_j \otimes Z_i\right)\\
&\mbox{ }+ \left(\ket{1}\bra{1}_j \otimes Z_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{0}\bra{0}_j \otimes I_i\right)\\
&\mbox{ }+ \left(\ket{0}\bra{0}_j \otimes I_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{1}\bra{1}_j \otimes Z_i\right)\\
&\mbox{ }+ \left(\ket{0}\bra{0}_j \otimes I_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{0}\bra{0}_j \otimes I_i\right)\\
&= \left(\ket{1}\bra{1}_j \otimes Z_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{1}\bra{1}_j \otimes Z_i\right)\\
&\mbox{ }+ \left(\ket{0}\bra{0}_j \otimes I_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{0}\bra{0}_j \otimes I_i\right)\\
&= \left(\left(-\ket{1}\bra{1}_j + \ket{1}\bra{1}_j\right) \otimes I_i\right) X_i \prod\limits_{l \in n'_i} Z_l \\
&= \left(Z_j \otimes I_i\right) X_i \prod\limits_{l \in n'_i} Z_l \\
&= X_i \prod\limits_{l \in n_i} Z_l \\
&= K_G^{(i)}
\end{aligned}
\end{equation}
The $\delta_{i,l} + \delta_{j,k}$ is either $0$ or $2$ by the definitions
of $K_G^{(i)}$ and $\ket{\tilde{G}}$.
%FIXME: This
%Let $\ket{+} := \left(\prod\limits_{l \in V} H_l\right) \ket{0}$ as before.
%Note that for any $X_i$: $X_i \ket{+} = +1 \ket{+}$. In the following
%discussion the direction $\prod\limits_{\{l,k\} \in E} :=
%\prod\limits_{\{l,k\} \in E, l < k}$ is introduced as the graph is
%undirected and edges must not be handled twice. Set $\ket{\tilde{G}} :=
%\left(\prod\limits_{\{l,k\} \in E} CZ_{l,k} \right)\ket{+}$.
%\begin{equation}
% \begin{aligned}
% K_G^{(i)} \ket{\tilde{G}}
% & = X_i \left(\prod\limits_{\{i,j\} \in E} Z_j\right)
% \left(\prod\limits_{\{l,k\} \in E} CZ_{l,k} \right) \ket{+} \\
% & = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)X_i\prod\limits_{\{l,k\} \in E}
% \left( \ket{0}\bra{0}_k \otimes I_l + \ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\
% & = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)\prod\limits_{\{l,k\} \in E}
% \left( \ket{0}\bra{0}_k \otimes I_l + (-1)^{\delta_{i,l}}\ket{1}\bra{1}_k \otimes Z_l\right) X_i \ket{+} \\
% \end{aligned}
%\end{equation}
%As $X,Z$ anticommute. $X_i$ can now be absorbed into $\ket{+}$. The next
%step is a bit tricky: A $Z_j$ can be absorbed into a $\ket{0}\bra{0}_j$
%giving no phase or into a $\ket{1}\bra{1}_j$ yielding a phase of $-1$. If
%there is no projector on $j$ the $Z_j$ can be commuted to the next
%projector. It is guaranteed that a projector on $j$ exists by the
%definition of $\ket{\tilde{G}}$.
%\begin{equation}
% \begin{aligned}
% K_G^{(i)} \ket{\tilde{G}}
% & = \prod\limits_{\{l,k\} \in E}\left( \ket{0}\bra{0}_k \otimes I_l + (-1)^{\delta_{i,l} + \delta_{j,k}}\ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\
% & = \prod\limits_{\{l,k\} \in E}\left( \ket{0}\bra{0}_k \otimes I_l + \ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\
% & = +1 \ket{\tilde{G}}
% \end{aligned}
%\end{equation}
%The $\delta_{i,l} + \delta_{j,k}$ is either $0$ or $2$ by the definitions
%of $K_G^{(i)}$ and $\ket{\tilde{G}}$.
\end{proof}
\subsubsection{Dynamics of the VOP-free Graph States}