diff --git a/thesis/chapters/stabilizer.tex b/thesis/chapters/stabilizer.tex index 8e94b5d..7e09cce 100644 --- a/thesis/chapters/stabilizer.tex +++ b/thesis/chapters/stabilizer.tex @@ -363,45 +363,87 @@ graph. \end{equation} \end{lemma} \begin{proof} - FIXME: This + The proof is done using mathematical induction over the edges $\{i,j\} \in + E$. A similar proof can be found in \cite{hein_eisert_briegel2008}. + \textbf{Base Case:} If $E = \{\}$ the stabilizers are $K_G^{(i)} = X_i$ + and stabilize the state $\ket{+}$. + + \textbf{Inductive Step:} Let $G' := (V, E \setminus \{\{l,j\}\})$. + By the induction hypothesis the state $\ket{\bar{G}'}$ is stabilized + by $K_{G'}^{(i)}$. Applying a $CZ_{l,j}$ to the state $\ket{\bar{G}'}$ + now transforms the stabilizers to - Let $\ket{+} := \left(\prod\limits_{l \in V} H_l\right) \ket{0}$ as before. - Note that for any $X_i$: $X_i \ket{+} = +1 \ket{+}$. In the following - discussion the direction $\prod\limits_{\{l,k\} \in E} := - \prod\limits_{\{l,k\} \in E, l < k}$ is introduced as the graph is - undirected and edges must not be handled twice. Set $\ket{\tilde{G}} := - \left(\prod\limits_{\{l,k\} \in E} CZ_{l,k} \right)\ket{+}$. \begin{equation} - \begin{aligned} - K_G^{(i)} \ket{\tilde{G}} - & = X_i \left(\prod\limits_{\{i,j\} \in E} Z_j\right) - \left(\prod\limits_{\{l,k\} \in E} CZ_{l,k} \right) \ket{+} \\ - & = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)X_i\prod\limits_{\{l,k\} \in E} - \left( \ket{0}\bra{0}_k \otimes I_l + \ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\ - & = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)\prod\limits_{\{l,k\} \in E} - \left( \ket{0}\bra{0}_k \otimes I_l + (-1)^{\delta_{i,l}}\ket{1}\bra{1}_k \otimes Z_l\right) X_i \ket{+} \\ - \end{aligned} + \begin{aligned} + S^{(i)} &= CZ_{l,j} K_{G'}^{(i)} CZ_{l,j}.\\ + \end{aligned} \end{equation} - As $X,Z$ anticommute. $X_i$ can now be absorbed into $\ket{+}$. The next - step is a bit tricky: A $Z_j$ can be absorbed into a $\ket{0}\bra{0}_j$ - giving no phase or into a $\ket{1}\bra{1}_j$ yielding a phase of $-1$. If - there is no projector on $j$ the $Z_j$ can be commuted to the next - projector. It is guaranteed that a projector on $j$ exists by the - definition of $\ket{\tilde{G}}$. + + Note that $CZ_{l,j}$ commutes with $K_{G'}^{(i)}$ for $l \neq i \neq j$. + Further $CZ_{l,j} = CZ_{j,l}$. Consider now the case $l = i$: \begin{equation} - \begin{aligned} - K_G^{(i)} \ket{\tilde{G}} - & = \prod\limits_{\{l,k\} \in E}\left( \ket{0}\bra{0}_k \otimes I_l + (-1)^{\delta_{i,l} + \delta_{j,k}}\ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\ - & = \prod\limits_{\{l,k\} \in E}\left( \ket{0}\bra{0}_k \otimes I_l + \ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\ - & = +1 \ket{\tilde{G}} - \end{aligned} + \begin{aligned} + S^{(i)} &= CZ_{i,j} K_{G'}^{(i)} CZ_{i,j} \\ + &= \left( \ket{1}\bra{1}_j \otimes Z_i + \ket{0}\bra{0}_j \otimes I_i \right) + X_i \prod\limits_{l \in n'_i} Z_l + \left( \ket{1}\bra{1}_j \otimes Z_i + \ket{0}\bra{0}_j \otimes I_i \right)\\ + &= \left(\ket{1}\bra{1}_j \otimes Z_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{1}\bra{1}_j \otimes Z_i\right)\\ + &\mbox{ }+ \left(\ket{1}\bra{1}_j \otimes Z_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{0}\bra{0}_j \otimes I_i\right)\\ + &\mbox{ }+ \left(\ket{0}\bra{0}_j \otimes I_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{1}\bra{1}_j \otimes Z_i\right)\\ + &\mbox{ }+ \left(\ket{0}\bra{0}_j \otimes I_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{0}\bra{0}_j \otimes I_i\right)\\ + &= \left(\ket{1}\bra{1}_j \otimes Z_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{1}\bra{1}_j \otimes Z_i\right)\\ + &\mbox{ }+ \left(\ket{0}\bra{0}_j \otimes I_i\right) X_i \prod\limits_{l \in n'_i} Z_l \left(\ket{0}\bra{0}_j \otimes I_i\right)\\ + &= \left(\left(-\ket{1}\bra{1}_j + \ket{1}\bra{1}_j\right) \otimes I_i\right) X_i \prod\limits_{l \in n'_i} Z_l \\ + &= \left(Z_j \otimes I_i\right) X_i \prod\limits_{l \in n'_i} Z_l \\ + &= X_i \prod\limits_{l \in n_i} Z_l \\ + &= K_G^{(i)} + \end{aligned} \end{equation} - The $\delta_{i,l} + \delta_{j,k}$ is either $0$ or $2$ by the definitions - of $K_G^{(i)}$ and $\ket{\tilde{G}}$. + + + %FIXME: This + + + %Let $\ket{+} := \left(\prod\limits_{l \in V} H_l\right) \ket{0}$ as before. + %Note that for any $X_i$: $X_i \ket{+} = +1 \ket{+}$. In the following + %discussion the direction $\prod\limits_{\{l,k\} \in E} := + %\prod\limits_{\{l,k\} \in E, l < k}$ is introduced as the graph is + %undirected and edges must not be handled twice. Set $\ket{\tilde{G}} := + %\left(\prod\limits_{\{l,k\} \in E} CZ_{l,k} \right)\ket{+}$. + + %\begin{equation} + % \begin{aligned} + % K_G^{(i)} \ket{\tilde{G}} + % & = X_i \left(\prod\limits_{\{i,j\} \in E} Z_j\right) + % \left(\prod\limits_{\{l,k\} \in E} CZ_{l,k} \right) \ket{+} \\ + % & = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)X_i\prod\limits_{\{l,k\} \in E} + % \left( \ket{0}\bra{0}_k \otimes I_l + \ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\ + % & = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)\prod\limits_{\{l,k\} \in E} + % \left( \ket{0}\bra{0}_k \otimes I_l + (-1)^{\delta_{i,l}}\ket{1}\bra{1}_k \otimes Z_l\right) X_i \ket{+} \\ + % \end{aligned} + %\end{equation} + %As $X,Z$ anticommute. $X_i$ can now be absorbed into $\ket{+}$. The next + %step is a bit tricky: A $Z_j$ can be absorbed into a $\ket{0}\bra{0}_j$ + %giving no phase or into a $\ket{1}\bra{1}_j$ yielding a phase of $-1$. If + %there is no projector on $j$ the $Z_j$ can be commuted to the next + %projector. It is guaranteed that a projector on $j$ exists by the + %definition of $\ket{\tilde{G}}$. + + %\begin{equation} + % \begin{aligned} + % K_G^{(i)} \ket{\tilde{G}} + % & = \prod\limits_{\{l,k\} \in E}\left( \ket{0}\bra{0}_k \otimes I_l + (-1)^{\delta_{i,l} + \delta_{j,k}}\ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\ + % & = \prod\limits_{\{l,k\} \in E}\left( \ket{0}\bra{0}_k \otimes I_l + \ket{1}\bra{1}_k \otimes Z_l\right) \ket{+} \\ + % & = +1 \ket{\tilde{G}} + % \end{aligned} + %\end{equation} + + %The $\delta_{i,l} + \delta_{j,k}$ is either $0$ or $2$ by the definitions + %of $K_G^{(i)}$ and $\ket{\tilde{G}}$. \end{proof} \subsubsection{Dynamics of the VOP-free Graph States}