some more work on the presentation

This commit is contained in:
Daniel Knüttel 2020-03-03 11:12:52 +01:00
parent 454d5b5347
commit 8c1be4a885

View File

@ -78,7 +78,7 @@
\pause
\item Fault tolerant QC needs a way to correct for those errors.
\pause
\item Several strategies exist one important class of quantum error correction codes are \textbf{stabilizer codes}.
\item Several strategies exist; one important class of quantum error correction codes are \textbf{stabilizer codes}.
\end{itemize}
\end{frame}
@ -368,6 +368,7 @@
\item{
The generators are not unique. For instance $C_1$ can be generated using $H, S$ or $\sqrt{-iX}, \sqrt{iZ}$.
}
\pause
\item{
The generators of a group have some kind of independence property.
}
@ -446,7 +447,7 @@
\begin{equation}
\ket{\psi'} = U\ket{\psi} = US^{(i)}\ket{\psi} = US^{(i)}U^\dagger U\ket{\psi} = US^{(i)}U^\dagger\ket{\psi'}
\end{equation}
this gives that if $U \in C_n$ $\ket{\psi'}$ is a stabilizer state again with the stabilizers
using this it is clear that for $U \in C_n$ the state $\ket{\psi'}$ is a stabilizer state again with the stabilizers
$S' = \langle US^{(i)}U^\dagger\rangle_{i=1,...,n}$
}
\item{
@ -454,7 +455,7 @@
stabilizers.
}
\item{Because the stabilizers are given by $n$ matrices which are the tensor product of $n$ Pauli matrices
this can be simulated in $n^2$ time instead of $2^n$.}
this can be simulated in $\mathcal{O}\left(n^2\right)$ time instead of $\mathcal{O}\left(2^n\right)$.}
\end{itemize}
\end{frame}
@ -464,6 +465,35 @@
\begin{frame}{Measurements on Stabilizer States}
\begin{itemize}
\item{
Consider a Pauli observable $g_a \in \{(-1)^s X_a, (-1)^s Y_a, (-1)^s Z_a\}$ and the projector
onto its eigenspace $\frac{I + g_a}{2}$.
}
\item{If $g_a$ commutes with all $S^{(i)}$ the observable $g_a$ is diagonal in this basis and
the stabilizer state $\ket{\psi}$ is the $+1$ eigenstate of $g_a$. Therefore the measurement is
deterministic and the stabilizers remain unchanged.}
\end{itemize}
\end{frame}
}
{
\begin{frame}{Measurements on Stabilizer States}
\begin{itemize}
\item{If $g_a$ does not commute with all stabilizers $A := \left\{S^{(i)} \middle| \left[g_a, S^{(i)}\right] \neq 0\right\}$
is the set of stabilizers that anticommute with $g_a$.}
\item{
To compute the probability to measure a result of $s=0$ one can use the trace formula
\begin{equation}
\begin{aligned}
P(s=0) &= \Tr(\frac{I + g_a}{2} \ket{\psi}\bra{\psi}) \\
&= \Tr(\frac{I + g_a}{2} S^{(j)} \ket{\psi}\bra{\psi}) \\
&= \Tr(S^{(j)}\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\
&= \Tr(\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\
&= P(s=1)\\
\end{aligned}
\end{equation}
where $S^{(j)} \in A$. The stabilizer $S^{(j)}$ pulled to the right using the cyclic property of the
trace and absorbed into the $\bra{\psi}$.
}
\end{itemize}