From 8c1be4a8851700f81226a6c28d2af27f2faf6fb1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Daniel=20Kn=C3=BCttel?= Date: Tue, 3 Mar 2020 11:12:52 +0100 Subject: [PATCH] some more work on the presentation --- presentation/main.tex | 36 +++++++++++++++++++++++++++++++++--- 1 file changed, 33 insertions(+), 3 deletions(-) diff --git a/presentation/main.tex b/presentation/main.tex index 5b08079..7fab365 100644 --- a/presentation/main.tex +++ b/presentation/main.tex @@ -78,7 +78,7 @@ \pause \item Fault tolerant QC needs a way to correct for those errors. \pause - \item Several strategies exist one important class of quantum error correction codes are \textbf{stabilizer codes}. + \item Several strategies exist; one important class of quantum error correction codes are \textbf{stabilizer codes}. \end{itemize} \end{frame} @@ -368,6 +368,7 @@ \item{ The generators are not unique. For instance $C_1$ can be generated using $H, S$ or $\sqrt{-iX}, \sqrt{iZ}$. } + \pause \item{ The generators of a group have some kind of independence property. } @@ -446,7 +447,7 @@ \begin{equation} \ket{\psi'} = U\ket{\psi} = US^{(i)}\ket{\psi} = US^{(i)}U^\dagger U\ket{\psi} = US^{(i)}U^\dagger\ket{\psi'} \end{equation} - this gives that if $U \in C_n$ $\ket{\psi'}$ is a stabilizer state again with the stabilizers + using this it is clear that for $U \in C_n$ the state $\ket{\psi'}$ is a stabilizer state again with the stabilizers $S' = \langle US^{(i)}U^\dagger\rangle_{i=1,...,n}$ } \item{ @@ -454,7 +455,7 @@ stabilizers. } \item{Because the stabilizers are given by $n$ matrices which are the tensor product of $n$ Pauli matrices - this can be simulated in $n^2$ time instead of $2^n$.} + this can be simulated in $\mathcal{O}\left(n^2\right)$ time instead of $\mathcal{O}\left(2^n\right)$.} \end{itemize} \end{frame} @@ -464,6 +465,35 @@ \begin{frame}{Measurements on Stabilizer States} \begin{itemize} \item{ + Consider a Pauli observable $g_a \in \{(-1)^s X_a, (-1)^s Y_a, (-1)^s Z_a\}$ and the projector + onto its eigenspace $\frac{I + g_a}{2}$. + } + \item{If $g_a$ commutes with all $S^{(i)}$ the observable $g_a$ is diagonal in this basis and + the stabilizer state $\ket{\psi}$ is the $+1$ eigenstate of $g_a$. Therefore the measurement is + deterministic and the stabilizers remain unchanged.} + \end{itemize} + +\end{frame} +} +{ +\begin{frame}{Measurements on Stabilizer States} + \begin{itemize} + \item{If $g_a$ does not commute with all stabilizers $A := \left\{S^{(i)} \middle| \left[g_a, S^{(i)}\right] \neq 0\right\}$ + is the set of stabilizers that anticommute with $g_a$.} + \item{ + To compute the probability to measure a result of $s=0$ one can use the trace formula + \begin{equation} + \begin{aligned} + P(s=0) &= \Tr(\frac{I + g_a}{2} \ket{\psi}\bra{\psi}) \\ + &= \Tr(\frac{I + g_a}{2} S^{(j)} \ket{\psi}\bra{\psi}) \\ + &= \Tr(S^{(j)}\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\ + &= \Tr(\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\ + &= P(s=1)\\ + \end{aligned} + \end{equation} + + where $S^{(j)} \in A$. The stabilizer $S^{(j)}$ pulled to the right using the cyclic property of the + trace and absorbed into the $\bra{\psi}$. } \end{itemize}