some more work on the presentation
This commit is contained in:
parent
454d5b5347
commit
8c1be4a885
|
@ -78,7 +78,7 @@
|
||||||
\pause
|
\pause
|
||||||
\item Fault tolerant QC needs a way to correct for those errors.
|
\item Fault tolerant QC needs a way to correct for those errors.
|
||||||
\pause
|
\pause
|
||||||
\item Several strategies exist one important class of quantum error correction codes are \textbf{stabilizer codes}.
|
\item Several strategies exist; one important class of quantum error correction codes are \textbf{stabilizer codes}.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
@ -368,6 +368,7 @@
|
||||||
\item{
|
\item{
|
||||||
The generators are not unique. For instance $C_1$ can be generated using $H, S$ or $\sqrt{-iX}, \sqrt{iZ}$.
|
The generators are not unique. For instance $C_1$ can be generated using $H, S$ or $\sqrt{-iX}, \sqrt{iZ}$.
|
||||||
}
|
}
|
||||||
|
\pause
|
||||||
\item{
|
\item{
|
||||||
The generators of a group have some kind of independence property.
|
The generators of a group have some kind of independence property.
|
||||||
}
|
}
|
||||||
|
@ -446,7 +447,7 @@
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\ket{\psi'} = U\ket{\psi} = US^{(i)}\ket{\psi} = US^{(i)}U^\dagger U\ket{\psi} = US^{(i)}U^\dagger\ket{\psi'}
|
\ket{\psi'} = U\ket{\psi} = US^{(i)}\ket{\psi} = US^{(i)}U^\dagger U\ket{\psi} = US^{(i)}U^\dagger\ket{\psi'}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
this gives that if $U \in C_n$ $\ket{\psi'}$ is a stabilizer state again with the stabilizers
|
using this it is clear that for $U \in C_n$ the state $\ket{\psi'}$ is a stabilizer state again with the stabilizers
|
||||||
$S' = \langle US^{(i)}U^\dagger\rangle_{i=1,...,n}$
|
$S' = \langle US^{(i)}U^\dagger\rangle_{i=1,...,n}$
|
||||||
}
|
}
|
||||||
\item{
|
\item{
|
||||||
|
@ -454,7 +455,7 @@
|
||||||
stabilizers.
|
stabilizers.
|
||||||
}
|
}
|
||||||
\item{Because the stabilizers are given by $n$ matrices which are the tensor product of $n$ Pauli matrices
|
\item{Because the stabilizers are given by $n$ matrices which are the tensor product of $n$ Pauli matrices
|
||||||
this can be simulated in $n^2$ time instead of $2^n$.}
|
this can be simulated in $\mathcal{O}\left(n^2\right)$ time instead of $\mathcal{O}\left(2^n\right)$.}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
@ -464,6 +465,35 @@
|
||||||
\begin{frame}{Measurements on Stabilizer States}
|
\begin{frame}{Measurements on Stabilizer States}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item{
|
\item{
|
||||||
|
Consider a Pauli observable $g_a \in \{(-1)^s X_a, (-1)^s Y_a, (-1)^s Z_a\}$ and the projector
|
||||||
|
onto its eigenspace $\frac{I + g_a}{2}$.
|
||||||
|
}
|
||||||
|
\item{If $g_a$ commutes with all $S^{(i)}$ the observable $g_a$ is diagonal in this basis and
|
||||||
|
the stabilizer state $\ket{\psi}$ is the $+1$ eigenstate of $g_a$. Therefore the measurement is
|
||||||
|
deterministic and the stabilizers remain unchanged.}
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\end{frame}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
\begin{frame}{Measurements on Stabilizer States}
|
||||||
|
\begin{itemize}
|
||||||
|
\item{If $g_a$ does not commute with all stabilizers $A := \left\{S^{(i)} \middle| \left[g_a, S^{(i)}\right] \neq 0\right\}$
|
||||||
|
is the set of stabilizers that anticommute with $g_a$.}
|
||||||
|
\item{
|
||||||
|
To compute the probability to measure a result of $s=0$ one can use the trace formula
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
P(s=0) &= \Tr(\frac{I + g_a}{2} \ket{\psi}\bra{\psi}) \\
|
||||||
|
&= \Tr(\frac{I + g_a}{2} S^{(j)} \ket{\psi}\bra{\psi}) \\
|
||||||
|
&= \Tr(S^{(j)}\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\
|
||||||
|
&= \Tr(\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\
|
||||||
|
&= P(s=1)\\
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
where $S^{(j)} \in A$. The stabilizer $S^{(j)}$ pulled to the right using the cyclic property of the
|
||||||
|
trace and absorbed into the $\bra{\psi}$.
|
||||||
}
|
}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user