did some work
This commit is contained in:
parent
37cb33b5b4
commit
519e58610f
|
@ -23,3 +23,4 @@ clean:
|
|||
-rm main.out
|
||||
-rm main.pdf
|
||||
-rm main.toc
|
||||
-rm main.bbl
|
||||
|
|
|
@ -10,39 +10,25 @@ $\ket{\downarrow} \equiv \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ whic
|
|||
is helpful in the following discussion.
|
||||
|
||||
A gate operating on a qbit is a unitary operator $G \in U(2)$. One can show that
|
||||
$\forall G \in U(2)$ $G$ can be expressed as a product of unitary generator matrices,
|
||||
$\forall G \in U(2)$ $G$ can be arbitrarily good as a product of unitary generator matrices\cite[Chapter 4.3]{kaye_ea2007},
|
||||
common choices for the generators are $ X, H, R_{\phi}$ and $Z, H, R_{\phi}$ with
|
||||
\label{ref:singleqbitgates}
|
||||
|
||||
$$X := \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right) $$
|
||||
$$Z := \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right) $$
|
||||
$$H := \frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1\end{array}\right) $$
|
||||
$$R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right) $$
|
||||
$$R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right)$$
|
||||
|
||||
\subsection{$N$ Qbit Systems}
|
||||
\label{ref:nqbitsystems}
|
||||
|
||||
A system of $N$ identical qbits is described by the kronecker product of the
|
||||
single qbit states. A nice definition for this product is:
|
||||
|
||||
\begin{definition}
|
||||
|
||||
Let $M$, $N$ be complex matrices, $M = \left(\begin{array}{cc} M_1 & M_2 \\ M_3 & M_4 \end{array}\right)$
|
||||
. Then the kronecker product is defined as
|
||||
|
||||
$$M \otimes N = \left(\begin{array}{cc} M_1 \otimes N & M_2 \otimes N \\ M_3 \otimes N & M_4 \otimes N \end{array}\right)$$
|
||||
|
||||
Where for any $c \in \mathbb{C}$ $ c \otimes N := cN$.
|
||||
\end{definition}
|
||||
|
||||
|
||||
\begin{postulate}
|
||||
A $N$ qbit quantum mechanical state is the kronecker product of the $N$ single qbit
|
||||
state.
|
||||
A $N$ qbit quantum mechanical state is the tensor product\cite[Definition 14.3]{wuest1995} of the $N$ single qbit
|
||||
states. The $N$ qbit operators are the tensor product of the $N$ single qbit operators.
|
||||
\end{postulate}
|
||||
|
||||
Let $\ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ and $\ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$
|
||||
be the basis of the one-qbit systems. Then two-qbit states are defined as
|
||||
be the basis of the one-qbit systems. Then two-qbit basis states are
|
||||
|
||||
$$ \ket{0} := \ket{0b00} := \ket{0}_s \otimes \ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right)$$
|
||||
$$ \ket{1} := \ket{0b01} := \ket{0}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right)$$
|
||||
|
@ -57,14 +43,15 @@ $$ \ket{\psi} = \sum\limits_{i = 0}^{2^N - 1} c_i \ket{i} $$
|
|||
$$ \sum\limits_{i = 0}^{2^N - 1} |c_i|^2 = 1$$
|
||||
|
||||
One can show that the gates in \ref{ref:singleqbitgates} together with an entanglement gate, such as $CX$ or $CZ$ are enough
|
||||
to generate an arbitrary $N$ qbit gate.
|
||||
to generate an arbitrary $N$ qbit gate\cite[Chapter 4.3]{kaye_ea2007}.
|
||||
|
||||
|
||||
$$ CX(1, 0) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{array}\right)$$
|
||||
$$ CZ(1, 0) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -1 \end{array}\right)$$
|
||||
|
||||
|
||||
Where $1$ is the act-qbit and $0$ the control-qbit.
|
||||
Where $1$ is the act-qbit and $0$ the control-qbit. In words $CX$ ($CZ$) apply an $X$ ($Z$) gate on the act-qbit,
|
||||
if the control-qbit is set.
|
||||
|
||||
\subsection{Measurement}
|
||||
|
||||
|
@ -79,3 +66,13 @@ Where $1$ is the act-qbit and $0$ the control-qbit.
|
|||
\end{postulate}
|
||||
|
||||
Measuring a qbit will also yield a classical result $0$ or $1$ with the respective probabilities.
|
||||
|
||||
\begin{corrolary}
|
||||
In general the measurement of a qbit is not invertible, in particular it cannot be represented as a
|
||||
unitary operator.
|
||||
\end{corrolary}
|
||||
|
||||
\begin{proof}
|
||||
The measuerment in not injective: Measuring both
|
||||
$\ket{0}$ and $\frac{1}{\sqrt{2}}(\ket{0} + \ket{1}$ (can) map to $\ket{0}$.
|
||||
\end{proof}
|
||||
|
|
|
@ -30,3 +30,17 @@
|
|||
author={Simon Anders and Hans J. Briegel},
|
||||
year=2005
|
||||
}
|
||||
@book{
|
||||
wuest1995,
|
||||
title={Höhere Mathematik Für Physiker Teil 1},
|
||||
author={Rainer Wüst},
|
||||
year=1995,
|
||||
publisher={de Gruyter}
|
||||
}
|
||||
@book{
|
||||
kaye_ea2007,
|
||||
title={An Introduction to Quantum Computing},
|
||||
author={Phillip Kaye, Raymond Laflamme and Michelle Mosca},
|
||||
year=2007,
|
||||
publisher={Oxford University Press}
|
||||
}
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
|
||||
\newtheorem{definition}{Definition}
|
||||
\newtheorem{postulate}{Postulate}
|
||||
\newtheorem{corrolary}{Corrolary}
|
||||
|
||||
\title{Development of an Extensible Quantum Computing
|
||||
Simulator with a Focus on Simulation in the Graph Formalism }
|
||||
|
|
Loading…
Reference in New Issue
Block a user