added some more stuff to general QC
This commit is contained in:
parent
1c4430dd58
commit
1a5b8f3ad1
|
@ -14,8 +14,8 @@
|
||||||
are used in these cases.
|
are used in these cases.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
A gate acting on a qbit is a unitary operator $G \in U(2)$. One can show that
|
A gate acting on a qbit is a unitary operator $G \in SU(2)$. One can show that
|
||||||
$\forall G \in U(2)$ $G$ can be approximated arbitrarily good as a product of unitary generator matrices
|
$\forall G \in SU(2)$ $G$ can be approximated arbitrarily good as a product of unitary generator matrices
|
||||||
\cite[Chapter 4.3]{kaye_ea2007}\cite[Chapter 2]{marquezino_ea_2019},
|
\cite[Chapter 4.3]{kaye_ea2007}\cite[Chapter 2]{marquezino_ea_2019},
|
||||||
common choices for the generators are $ X, H, R_{\phi}$ and $Z, H, R_{\phi}$ with
|
common choices for the generators are $ X, H, R_{\phi}$ and $Z, H, R_{\phi}$ with
|
||||||
\label{ref:singleqbitgates}
|
\label{ref:singleqbitgates}
|
||||||
|
@ -108,10 +108,25 @@ is the $U$ gate acting on qbit $j$.
|
||||||
\begin{definition}\label{def:CU}
|
\begin{definition}\label{def:CU}
|
||||||
For two qbits $i,j = 0, 1, ..., n - 1$, $i \neq j$ and a gate $U_i$ acting on $i$
|
For two qbits $i,j = 0, 1, ..., n - 1$, $i \neq j$ and a gate $U_i$ acting on $i$
|
||||||
the controlled version of $U$ is defined by
|
the controlled version of $U$ is defined by
|
||||||
\begin{equation}\label{eq:CU}
|
\begin{equation}
|
||||||
CU_{i, j} = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes U_i
|
\begin{aligned}\label{eq:CU}
|
||||||
|
CU_{i, j} &:= &\ket{0}\bra{0}_j\otimes I_i
|
||||||
|
+ \ket{1}\bra{1}_j \otimes U_i \\
|
||||||
|
&:= &\left(\bigotimes\limits_{l < j} I\right)
|
||||||
|
\otimes \ket{0}\bra{0}
|
||||||
|
\otimes \left(\bigotimes\limits_{j < l < i} I\right)
|
||||||
|
\otimes I
|
||||||
|
\otimes \left(\bigotimes\limits_{j > l} I \right)\\
|
||||||
|
& &+ \left(\bigotimes\limits_{l < j} I\right)
|
||||||
|
\otimes \ket{1}\bra{1}
|
||||||
|
\otimes \left(\bigotimes\limits_{j < l < i} I\right)
|
||||||
|
\otimes U
|
||||||
|
\otimes \left(\bigotimes\limits_{j > l} I \right)\\
|
||||||
|
\end{aligned}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
where without loss of generality $j < i$; the other case is analogous.
|
||||||
|
|
||||||
In particular for $X, Z$:
|
In particular for $X, Z$:
|
||||||
\begin{equation}\label{eq:CX_pr}
|
\begin{equation}\label{eq:CX_pr}
|
||||||
CX(i, j) = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes X_i
|
CX(i, j) = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes X_i
|
||||||
|
@ -122,7 +137,7 @@ is the $U$ gate acting on qbit $j$.
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
In the definition \ref{def:CU} $i$ is called the act-qbit and $j$ the control-qbit. In words
|
In Definition \ref{def:CU} $i$ is called the act-qbit and $j$ the control-qbit. In words
|
||||||
$CU$ applies the gate $U$ to the act-qbit if the control-qbit is in its $\ket{1}$ state.
|
$CU$ applies the gate $U$ to the act-qbit if the control-qbit is in its $\ket{1}$ state.
|
||||||
|
|
||||||
One can show that the gates in \ref{ref:singleqbitgates} together with an entanglement gate, such as $CX$ or $CZ$ are enough
|
One can show that the gates in \ref{ref:singleqbitgates} together with an entanglement gate, such as $CX$ or $CZ$ are enough
|
||||||
|
|
Loading…
Reference in New Issue
Block a user