scientific-programming-exer.../exam/ex08/main.py

50 lines
1.3 KiB
Python
Raw Permalink Normal View History

2019-02-23 19:07:55 +00:00
import numpy as np
import matplotlib.pyplot as plt
class BrownIterator(object):
def __init__(self, N, m):
self._N = N
self._max_m = m
self._i = 0
self._xs = None
self._ys = None
def __iter__(self):
self._xs = np.zeros(self._N) + 1.5
self._ys = np.zeros(self._N)
self._i = 0
return self
def __next__(self):
self._i += 1
if(self._i > self._max_m):
raise StopIteration()
if(self._i == 1):
return self._xs, self._ys
theta = np.random.uniform(0, np.pi * 2, self._N)
self._xs = self._xs + np.cos(theta)
self._ys = self._ys + np.sin(theta)
# Reflect the particles
self._xs[self._xs > 3] += 1.5 * (3 - self._xs[self._xs > 3])
self._ys[self._ys > 3] += 1.5 * (3 - self._ys[self._ys > 3])
self._xs[self._xs < -3] += 1.5 * (-3 - self._xs[self._xs < -3])
self._ys[self._ys < -3] += 1.5 * (-3 - self._ys[self._ys < -3])
return self._xs, self._ys
if( __name__ == "__main__"):
data = np.array([i for i in BrownIterator(1000, 251)])
print(data)
p1, = plt.plot(data[5,0], data[5,1], "r.", label="t = 5")
p2, = plt.plot(data[25,0], data[25,1], "y.", label="t = 25")
p3, = plt.plot(data[50,0], data[50,1], "b.", label="t = 50")
p4, = plt.plot(data[250,0], data[250,1], "g.", label="t = 250")
plt.legend(handles=[p1, p2, p3, p4])
plt.show()