sBasic -- yet another simple programming
language

Contents

sBasic Usage
sBasic Language Specification
Whitespace
Variables and Arithmetic Operations
Conditional Statements
Loops
Routines
Special Commands
Comments
Strings
Datatypes

W W W W W N NDN PR R

sBasic Application Extensions

sBasic Usage

sBasic is designed for freely programmable embedded applications that do not allow scripting languages
like JS, Lua or Python.

One should not write applications with it, in contrary it is designed to write extensions for micro controller
projects.

sBasic Language Specification

Whitespace

The following whitespace characters will be converted to a single blank (0x20): \t\r and multiple
blanks.

The newline character (\ n) is a special character however multiple newline characters will be interpreted
as one.

A statement always ends with a newline character. Tokens are separated by blanks.

Variables and Arithmetic Operations

Variables have data types. Usually they will be integers, but there might be other application specific
datatypes.

Variables have to be declared explicitly using the scheme:
<dat at ype> <vari abl enane> ' =" <val ue>

Note that variable names must start with an alphabetic character. Variable names can contain after the
first character all of the following characters:



a..zA .Z0..9_

Datatype names must follow the same conventions as the variable name convention.
Note: Variables are always global.
Here is an example for valid variable declarations:

int A=2

int B=3
int Aplus_B =20

Arithmetic commands are application specific, for integer usually + - * / are defined. Arithmetic
commands can be grouped by using parenthesis () .

* and/ will be executed before + and -, the inner of parenthesis will be executed before the outer and
by default commands will be executed in the order they appear.

Conditional Statements

sBasic knows the if-else-structure:

| F <expr>

THEN
<st at enent >
{<st at enent >}

[ ELSE
<st at enent >
{<statenent >}]
FI
Loops

sBasic knows the while-loop:

VWHI LE <expr >

DO
<st at enment >
{<st at enent >}
DONE
Routines

Because in sBasic variables are always global there is no need for functions. Instead Routines are used to
group code.

Routines can be defined defined at any point of the code but the first statement. However when the
program execution reaches a Routine this will result in a stack-underflow. The compiler will therefore
check that a routine cannot be reached without a call.

Any routine must therefore not be the first statement and must follow either a CALL or the HALT
command.

A routine is defined like this:



ROUTI NE <r outi ne_nane>
<st at enent >
{<st at enent >}
END

The name of a Routine must follow the conventions for variable names.

Routines can be executed by calling them:

CALL <routine_name>

Special Commands

There is one built-in special command:
STOP

that will cause the bytecode interpreter to halt.

Comments

Comments start with a # at the beginning of the line and span over the entire line. The # sign might
follow one (or more) blanks.

Strings
There are two types of strings in sBasic: single line strings and multi line strings.

A single line string starts and ends with a " character and must not span over several lines. The following
conventions for strings are used: = is treated as character *,\\ is treated as a single\,\n, r,t isthe
newline, carriage return, tab character. Any other combination of \ and a character is a syntax error.

A multi line string starts and ends with a ~ character and can span over several lines. Every newline
character in the string will be treated as such. " is treated as character ". The rest of the conventions
follow the conventions for single line strings.

Note that strings in sBasic are static and stored in the program memory.

Datatypes

« Strings are indicated by the str keyword. The variable itself is a pointer to the actual string that will
be stored at the end of the program memory

* Integers are indicated by the i nt keyword.

» Characters are indicated by the chr keyword. Literal characters are surrounded by two '
characters. They can contain escape sequences (\ ntr').

* Floats are not supported by vanilla sBasic. They should however be marked using the fl1t or dbl
keywords.

sBasic Application Extensions

When it comes to real world applications the sBasic language should be extended with Application
Specific Commands (ASC). Those provide a way to directly access the assembly language controlling the
bytecode interpreter.

ASCs should typically compile to few assembly commands, like:



# sBasic
string string part = string + 1
PUTCREF string part

; assenbly

; string_part = string + 1
ld 0, string

Id 1, 1

add 0, 1

st 0, string_part

; PUTCREF string_part
Ild 0, string_part
putcref O



	sBasic Usage
	sBasic Language Specification
	Whitespace
	Variables and Arithmetic Operations
	Conditional Statements
	Loops
	Routines
	Special Commands
	Comments
	Strings
	Datatypes

	sBasic Application Extensions

