master
Daniel Knüttel 2019-07-24 19:19:41 +02:00
commit 5292197cba
10 changed files with 603 additions and 0 deletions

70
c/internal_deque.c 100644
View File

@ -0,0 +1,70 @@
#include "internal_deque.h"
#include <stdlib.h>
i_deque_t *
i_deque_t_new
( PyObject * content
, i_deque_t * next)
{
i_deque_t * deque = malloc(sizeof(i_deque_t));
if(!deque)
{
return NULL;
}
deque->content = content;
deque->next = next;
if(next)
{
deque->following = next->following + 1;
}
else
{
deque->following = 0;
}
return deque;
}
void
i_deque_t_del
(i_deque_t * deque)
{
if(deque)
{
free(deque);
}
}
PyObject *
i_deque_t_to_List
(i_deque_t * deque)
{
if(!deque)
{
return PyList_New(0);
}
PyObject * list = PyList_New(deque->following + 1);
if(!list)
{
return NULL;
}
i_deque_t * this_node;
PyObject * this_content;
size_t i;
size_t content_length = deque->following + 1;
for(i = 0; i < content_length; i++)
{
this_node = deque;
deque = deque->next;
this_content = this_node->content;
i_deque_t_del(this_node);
Py_INCREF(this_content);
PyList_SetItem(list, content_length - 1 - i, this_content);
}
return list;
}

38
c/internal_deque.h 100644
View File

@ -0,0 +1,38 @@
#ifndef interpol_internal_deque_h
#define interpol_internal_deque_h
#include <Python.h>
/*
*
* This module contains a linked list implementation that is used internally
* as a deque. The internal deques are then converted to python lists.
*
* */
typedef struct i_deque_s
{
struct i_deque_s * next;
PyObject * content;
size_t following;
} i_deque_t;
i_deque_t *
i_deque_t_new
( PyObject * content
, i_deque_t * next);
void
i_deque_t_del
(i_deque_t * deque);
PyObject *
i_deque_t_to_List
(i_deque_t * deque);
#define i_deque_t_start() NULL
#define i_deque_t_insert(deque, content) i_deque_t_new(content, deque)
#endif

View File

@ -0,0 +1,399 @@
#define interpol_splines_linear_c
#include "linear_splines.h"
#include "../../internal_deque.h"
double linear_spline_eval_double(
double x
, interpol_splines_linear_InterPolator * interpolator)
{
unsigned long int i = 0;
double * X = PyArray_DATA(interpolator->x);
double * Y = PyArray_DATA(interpolator->y);
// Outside the known data.
if(x < X[0])
{
return 0;
}
// Somehow this has to be handled explicitly.
if(x == X[0])
{
i = 1;
}
else
{
while(x < X[i] && i < interpolator->grid_points)
{
i++;
}
}
return Y[i - 1] + (x - X[i - 1]) / (X[i] - X[i - 1]) * (Y[i] - Y[i - 1]);
}
float linear_spline_eval_float(
float x
, interpol_splines_linear_InterPolator * interpolator)
{
unsigned long int i = 0;
float * X = PyArray_DATA(interpolator->x);
float * Y = PyArray_DATA(interpolator->y);
// Outside the known data.
if(x < X[0])
{
return 0;
}
// Somehow this has to be handled explicitly.
if(x == X[0])
{
i = 1;
}
else
{
while(x < X[i] && i < interpolator->grid_points)
{
i++;
}
}
return Y[i - 1] + (x - X[i - 1]) / (X[i] - X[i - 1]) * (Y[i] - Y[i - 1]);
}
static PyObject *
interpol_splines_linear_InterPolator_new
( PyTypeObject * type
, PyObject * args
, PyObject * kwds)
{
interpol_splines_linear_InterPolator * self = (interpol_splines_linear_InterPolator *) type->tp_alloc(type, 0);
return (PyObject *) self;
}
static int
interpol_splines_linear_InterPolator_init
( interpol_splines_linear_InterPolator * self
, PyObject * args)
{
if(!PyArg_ParseTuple(args, "O!O!"
, &PyArray_Type, &(self->x)
, &PyArray_Type, &(self->y)))
{
return -1;
}
// Check for proper data types & dimensions first.
if(self->x->nd != 1)
{
PyErr_SetString(PyExc_ValueError, "x has to have 1 dimension");
return -1;
}
if(self->y->nd != 1)
{
PyErr_SetString(PyExc_ValueError, "y has to have 1 dimension");
return -1;
}
if(PyArray_TYPE(self->x) != PyArray_TYPE(self->y))
{
PyErr_SetString(PyExc_TypeError, "x and y have to have the same data type");
return -1;
}
if(PyArray_TYPE(self->x) == NPY_FLOAT)
{
self->eval = linear_spline_eval_double;
}
else if(PyArray_TYPE(self->x) == NPY_DOUBLE)
{
self->eval = linear_spline_eval_float;
}
else
{
PyErr_SetString(PyExc_TypeError, "x and y have to be either float or double");
return -1;
}
if(self->x->dimensions[0] != self->y->dimensions[0])
{
PyErr_SetString(PyExc_ValueError, "x and y must have the same length");
return -1;
}
if((PyArray_FLAGS(self->x) & NPY_CARRAY_RO) != NPY_CARRAY_RO)
{
PyErr_SetString(PyExc_ValueError, "x must be a readable C Array");
return -1;
}
if((PyArray_FLAGS(self->y) & NPY_CARRAY_RO) != NPY_CARRAY_RO)
{
PyErr_SetString(PyExc_ValueError, "y must be a readable C Array");
return -1;
}
self->grid_points = self->x->dimensions[0];
Py_INCREF(self->x);
Py_INCREF(self->y);
return 0;
}
static PyObject *
interpol_splines_linear_InterPolator_eval_pyfloat
( interpol_splines_linear_InterPolator * self
, PyObject * args
)
{
double x;
double result;
if(!PyArg_ParseTuple(args, "d", &x))
{
return NULL;
}
result = (double) (self->eval)(x, self);
return Py_BuildValue("d", result);
}
PyDoc_STRVAR(interpol_splines_linear_InterPolator_eval_pyfloat_doc
, "evaluate the spline at the given point");
/*
static PyObject *
interpol_splines_linear_InterPolator_eval_ndarray
( interpol_splines_linear_InterPolator * self
, PyObject * args
)
{
PyArray * x;
PyArray * y;
if(!PyArg_ParseTuple(args, "O!O!", &PyArray_Type, &x, &PyArray_Type, &y))
{
return NULL;
}
if(PyArray_FLAGS(x) & NPY_CARRAY_RO != NPY_CARRAY_RO)
{
PyErr_SetString(PyExc_ValueError, "x must be a readable c array");
return NULL;
}
if(PyArray_FLAGS(y) & NPY_CARRAY_RW != NPY_CARRAY_RW)
{
PyErr_SetString(PyExc_ValueError, "y must be a readable and writable c array");
return NULL;
}
if(PyArray_TYPE(x) != NPY_FLOAT
&& PyArray_TYPE(x) != NPY_DOUBLE)
{
PyErr_SetString(PyExc_TypeError, "x must be either float or double");
return NULL;
}
if(PyArray_TYPE(x) != PyArray_TYPE(y))
{
PyErr_SetString(PyExc_TypeError, "x and y must have same datatype");
return NULL;
}
if(PyArray_Size(x) != PyArray_Size(y))
{
PyErr_SetString(PyExc_ValueError, "x and y must have same length");
}
npy_intp size = PyArray_NBYTES(x);
npy_intp element_size = PyArray_ITEMSIZE(x);
char * x_data = PyArray_BYTES(x);
char * y_data = PyArray_BYTES(y);
// FIXME:
// I have to pay attention to datatypes here.
while(x_data < size)
{
*y_data = self->eval(*x, self);
}
}
*/
int
interpol_splines_linear_InterPolator_equals_pyfloat_search_float
( interpol_splines_linear_InterPolator * self
, i_deque_t ** deque
, double y)
{
float * x_data = (float *) PyArray_DATA(self->x),
* y_data = (float *) PyArray_DATA(self->y);
PyObject * this_result;
long unsigned int i;
for(i = 1; i < self->grid_points; i++)
{
if(y_data[i - 1] <= y && y_data[i] >= y)
{
// just avoid zero division
if(y_data[i - 1] == y_data[i])
{
this_result = PyFloat_FromDouble(x_data[i - 1]);
if(!this_result)
{
return -1;
}
*deque = i_deque_t_insert(*deque, this_result);
continue;
}
this_result = PyFloat_FromDouble(
(y - y_data[i - 1]) / (y_data[i] - y_data[i - 1]) * (x_data[i] - x_data[i - 1]) + x_data[i - 1]);
if(!this_result)
{
return -1;
}
*deque = i_deque_t_insert(*deque, this_result);
}
}
return 0;
}
int
interpol_splines_linear_InterPolator_equals_pyfloat_search_double
( interpol_splines_linear_InterPolator * self
, i_deque_t ** deque
, double y)
{
double * x_data = (double *) PyArray_DATA(self->x),
* y_data = (double *) PyArray_DATA(self->y);
PyObject * this_result;
long unsigned int i;
for(i = 1; i < self->grid_points; i++)
{
if(y_data[i - 1] <= y && y_data[i] >= y)
{
// just avoid zero division
if(y_data[i - 1] == y_data[i])
{
this_result = PyFloat_FromDouble(x_data[i - 1]);
if(!this_result)
{
return -1;
}
*deque = i_deque_t_insert(*deque, this_result);
continue;
}
this_result = PyFloat_FromDouble(
(y - y_data[i - 1]) / (y_data[i] - y_data[i - 1]) * (x_data[i] - x_data[i - 1]) + x_data[i - 1]);
if(!this_result)
{
return -1;
}
*deque = i_deque_t_insert(*deque, this_result);
}
}
return 0;
}
static PyObject *
interpol_splines_linear_InterPolator_equals_pyfloat
( interpol_splines_linear_InterPolator * self
, PyObject * args)
{
double y;
if(!PyArg_ParseTuple(args, "d", &y))
{
return NULL;
}
i_deque_t * deque = i_deque_t_start();
if(PyArray_TYPE(self->y) == NPY_FLOAT)
{
interpol_splines_linear_InterPolator_equals_pyfloat_search_float(self, &deque, y);
}
else
{
interpol_splines_linear_InterPolator_equals_pyfloat_search_double(self, &deque, y);
}
return i_deque_t_to_List(deque);
}
PyDoc_STRVAR(interpol_splines_linear_InterPolator_equals_pyfloat_doc
, "return a deque to all the points where s(x) = y");
static PyMethodDef interpol_splines_linear_InterPolator_Methods[] =
{
{"eval_float", (PyCFunction) interpol_splines_linear_InterPolator_eval_pyfloat, METH_O, interpol_splines_linear_InterPolator_eval_pyfloat_doc}
, {"equals_float", (PyCFunction) interpol_splines_linear_InterPolator_equals_pyfloat, METH_O, interpol_splines_linear_InterPolator_equals_pyfloat_doc}
, {NULL, NULL, 0, NULL}
};
static PyTypeObject interpol_splines_linear_InterPolatorType =
{
PyVarObject_HEAD_INIT(NULL, 0)
"interpol.splines.linear.do.Interpolator",
sizeof(interpol_splines_linear_InterPolator),
0, /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT ,/* tp_flags */
"The backend for linear splines.",
0,
0,
0,
0,
0,
0,
interpol_splines_linear_InterPolator_Methods, // methods
0, // members
0,
0,
0,
0,
0,
0,
(initproc) interpol_splines_linear_InterPolator_init,
0,
interpol_splines_linear_InterPolator_new,
};
static PyModuleDef interpol_splines_linear_do_module =
{
PyModuleDef_HEAD_INIT,
"interpol.splines.linear.do",
"module containing the backend to linear splines",
-1,
NULL,NULL,NULL,NULL,NULL
};
PyMODINIT_FUNC PyInit_do(void)
{
PyObject * module;
if(PyType_Ready(&interpol_splines_linear_InterPolatorType) < 0)
{
return NULL;
}
module = PyModule_Create(&interpol_splines_linear_do_module);
if(!module)
{
return NULL;
}
Py_INCREF(&interpol_splines_linear_InterPolatorType);
PyModule_AddObject(module, "InterPolator", (PyObject *) &interpol_splines_linear_InterPolatorType);
import_array();
return module;
}

View File

@ -0,0 +1,35 @@
#ifndef interpol_splines_linear_h
#define interpol_splines_linear_h
#include <Python.h>
#include <numpy/arrayobject.h>
typedef struct _interpol_splines_linear_InterPolator_s
{
PyObject_HEAD
long unsigned int grid_points;
PyArrayObject * x;
PyArrayObject * y;
// This is either
// linear_spline_eval_double or linear_spline_eval_float and
// is used to evaluate the spline at a given x efficiently.
double (* eval)(double, struct _interpol_splines_linear_InterPolator_s *);
} interpol_splines_linear_InterPolator;
double linear_spline_eval_double
( double x
, interpol_splines_linear_InterPolator * interpolator
);
float linear_spline_eval_float
( float x
, interpol_splines_linear_InterPolator * interpolator
);
#ifndef interpol_splines_linear_c
#endif
#endif

View File

Binary file not shown.

View File

@ -0,0 +1,39 @@
import numpy as np
from collections import deque
class HatLinearSplineInterpolator(object):
def __init__(self, x, y):
if(len(x) != len(y)):
raise ValueError("x and y have to have the same length")
self._x = x
self._y = y
def eval_at_point(self, x):
if(x < self._x[0]):
return 0
if(x > self._x[-1]):
return 0
for i, x_test in enumerate(self._x[:-1]):
if(x_test <= x <= self._x[i + 1]):
break
return self._y[i - 1] + (x - self._x[i - 1]) / (self._x[i] - self._x[i - 1]) * (self._y[i] - self._y[i - 1])
def equals(self, y):
result = deque()
for i, y_test in enumerate(self._y):
if(not i):
continue
if((self._y[i - 1] <= y <= y_test)
or (self._y[i - 1] >= y >= y_test)):
if(self._y[i - 1] == y_test):
result.append(self._x[i - 1])
continue
result.append(self._x[i - 1] + (y - self._y[i - 1]) / (self._y[i] - self._y[i - 1]) * (self._x[i] - self._x[i - 1]))
return np.array(result)

17
setup.py 100644
View File

@ -0,0 +1,17 @@
from distutils.core import setup, Extension
interpol_spline_linear_do = Extension("interpol.spline.linear.do",
sources = ["c/splines/linear/linear_splines.c", "c/internal_deque.c"])
setup(name = "interpol",
version = "0.0.1",
description = "a numerical library for working with interpolation",
ext_modules = [interpol_spline_linear_do],
packages = [
"interpol"
],
package_dir = {"interpol": "py/interpol"},
url="https://github.com/daknuett/python3-interpol",
author = "Daniel Knüttel",
author_email = "daniel.knuettel@daknuett.eu")

5
test.py 100644
View File

@ -0,0 +1,5 @@
import interpol.spline.linear.do as do
import numpy as np
x = np.arange(0, 4, 0.3)
y = np.cos(x)
ip = do.InterPolator(x, y)