brown/particles.py

64 lines
1.7 KiB
Python

from brown.interaction import UFuncWrapper
from brown.brown import BrownIterator
import numpy as np
from collections import deque
from copy import copy
import matplotlib.pyplot as plt
import matplotlib.animation as ani
from coefficients import c
#force_function = UFuncWrapper(0, c)
#interaction2D = UFuncWrapper(1, c)
borders_x = [-100, 100]
borders_y = [-100, 100]
n_particles = 600
frames = 1000
spawn_restriction = 1.1
dt = 0.1
c[-1] = dt
x_coords = np.random.uniform(borders_x[0] / spawn_restriction, borders_x[1] / spawn_restriction, n_particles).astype(np.float16)
y_coords = np.random.uniform(borders_y[0] / spawn_restriction, borders_y[1] / spawn_restriction, n_particles).astype(np.float16)
x_momenta = np.zeros(n_particles, dtype=np.float16)
y_momenta = np.zeros(n_particles, dtype=np.float16)
fig = plt.figure(figsize=(7, 7))
ax = fig.add_axes([0, 0, 1, 1], frameon=False)
ax.set_xlim(*borders_x)
ax.set_xticks([])
ax.set_ylim(*borders_y)
ax.set_yticks([])
plot, = ax.plot(x_coords, y_coords, "b.")
center_of_mass, = ax.plot(x_coords.mean(), y_coords.mean(), "r-")
center_of_mass_history_x = deque([x_coords.mean()])
center_of_mass_history_y = deque([y_coords.mean()])
brown = BrownIterator(-1, c
, x_coords, y_coords
, y_momenta, y_momenta
#, borders_x, borders_y
, [], []
, border_dampening=1
, dt=dt)
u = iter(brown)
def update(i):
data = next(u)
center_of_mass_history_x.append(x_coords.mean())
center_of_mass_history_y.append(y_coords.mean())
plot.set_data(*data)
center_of_mass.set_data(center_of_mass_history_x, center_of_mass_history_y)
animation = ani.FuncAnimation(fig, update, range(frames), interval=1)
plt.show()
#animation.save("animation.mp4", fps=30)