from brown.interaction import UFuncWrapper from brown.brown import BrownIterator import numpy as np from collections import deque from copy import copy import matplotlib.pyplot as plt import matplotlib.animation as ani from coefficients import c #force_function = UFuncWrapper(0, c) #interaction2D = UFuncWrapper(1, c) borders_x = [-100, 100] borders_y = [-100, 100] n_particles = 600 frames = 100 spawn_restriction = 1.1 dt = 0.01 c[-1] = dt x_coords = np.random.uniform(borders_x[0] / spawn_restriction, borders_x[1] / spawn_restriction, n_particles).astype(np.float16) y_coords = np.random.uniform(borders_y[0] / spawn_restriction, borders_y[1] / spawn_restriction, n_particles).astype(np.float16) x_momenta = np.zeros(n_particles, dtype=np.float16) y_momenta = np.zeros(n_particles, dtype=np.float16) fig = plt.figure(figsize=(7, 7)) ax = fig.add_axes([0, 0, 1, 1], frameon=False) ax.set_xlim(*borders_x) ax.set_xticks([]) ax.set_ylim(*borders_y) ax.set_yticks([]) plot, = ax.plot(x_coords, y_coords, "b.") center_of_mass, = ax.plot(x_coords.mean(), y_coords.mean(), "r-") center_of_mass_history_x = deque([x_coords.mean()]) center_of_mass_history_y = deque([y_coords.mean()]) brown = BrownIterator(-1, c , x_coords, y_coords , y_momenta, y_momenta , borders_x, borders_y #, [], [] , border_dampening=1 , dt=dt) u = iter(brown) def update(i): data = next(u) center_of_mass_history_x.append(x_coords.mean()) center_of_mass_history_y.append(y_coords.mean()) plot.set_data(*data) center_of_mass.set_data(center_of_mass_history_x, center_of_mass_history_y) animation = ani.FuncAnimation(fig, update, range(frames), interval=1) plt.show() #animation.save("animation.mp4", fps=30)