58 lines
1.6 KiB
Python
58 lines
1.6 KiB
Python
|
from brown.interaction import UFuncWrapper
|
||
|
from brown.brown import BrownIterator
|
||
|
import numpy as np
|
||
|
from collections import deque
|
||
|
from copy import copy
|
||
|
import matplotlib.pyplot as plt
|
||
|
import matplotlib.animation as ani
|
||
|
|
||
|
c = np.array([5, 10, 20, 30, 0, 0, 0, 1, -20, 0, -2, -0.1, 2, 0, 0, 0, 0, 0, 0], dtype=np.float16)
|
||
|
#force_function = UFuncWrapper(0, c)
|
||
|
#interaction2D = UFuncWrapper(1, c)
|
||
|
|
||
|
borders_x = [-100, 100]
|
||
|
borders_y = [-100, 100]
|
||
|
n_particles = 6
|
||
|
frames = 1000
|
||
|
|
||
|
x_coords = np.random.uniform(borders_x[0] / 2, borders_x[1] / 2, n_particles).astype(np.float16)
|
||
|
y_coords = np.random.uniform(borders_y[0] / 2, borders_y[1] / 2, n_particles).astype(np.float16)
|
||
|
|
||
|
|
||
|
x_momenta = np.zeros(n_particles, dtype=np.float16)
|
||
|
y_momenta = np.zeros(n_particles, dtype=np.float16)
|
||
|
|
||
|
|
||
|
|
||
|
fig = plt.figure(figsize=(7, 7))
|
||
|
ax = fig.add_axes([0, 0, 1, 1], frameon=False)
|
||
|
ax.set_xlim(*borders_x)
|
||
|
ax.set_xticks([])
|
||
|
ax.set_ylim(*borders_y)
|
||
|
ax.set_yticks([])
|
||
|
|
||
|
plot, = ax.plot(x_coords, y_coords, "b.")
|
||
|
center_of_mass, = ax.plot(x_coords.mean(), y_coords.mean(), "r-")
|
||
|
center_of_mass_history_x = deque([x_coords.mean()])
|
||
|
center_of_mass_history_y = deque([y_coords.mean()])
|
||
|
|
||
|
brown = BrownIterator(-1, c
|
||
|
, x_coords, y_coords
|
||
|
, y_momenta, y_momenta
|
||
|
, borders_x, borders_y
|
||
|
, border_dampening=1
|
||
|
, dt=0.001)
|
||
|
|
||
|
u = iter(brown)
|
||
|
|
||
|
def update(i):
|
||
|
data = next(u)
|
||
|
center_of_mass_history_x.append(x_coords.mean())
|
||
|
center_of_mass_history_y.append(y_coords.mean())
|
||
|
|
||
|
plot.set_data(*data)
|
||
|
center_of_mass.set_data(center_of_mass_history_x, center_of_mass_history_y)
|
||
|
|
||
|
animation = ani.FuncAnimation(fig, update, range(frames), interval=1)
|
||
|
plt.show()
|