bachelor_thesis/performance/generate_data_scaling_qbits.py

74 lines
2.4 KiB
Python

from collections import deque
import matplotlib.pyplot as plt
import numpy as np
import json
from pyqcs import State, H, X, S, CZ, M, list_to_circuit
from pyqcs.graph.state import GraphState
from pyqcs.util.random_circuits import random_circuit
from measure_circuit import execution_statistics
def S_with_extra_arg(act, i):
return S(act)
def test_scaling_qbits(state_factory
, nstart
, nstop
, ngates_per_qbit
, ncircuits
, **kwargs):
results = deque()
for qbits in range(nstart, nstop):
measurement_circuit = list_to_circuit([M(i) for i in range(qbits)])
circuits = [random_circuit(qbits, ngates_per_qbit * qbits, X, H, S_with_extra_arg, CZ)
| measurement_circuit
for _ in range(ncircuits)]
state = state_factory(qbits)
print("running test with", qbits, "qbits")
N, avg, std_dev = execution_statistics(circuits, state, scale=qbits, **kwargs)
results.append([qbits, N, avg, std_dev])
return np.array(results, dtype=np.double)
if __name__ == "__main__":
nstart = 4
nstop = 16
ncircuits = 50
ngates_per_qbit = 100
seed = 0xdeadbeef
np.random.seed(seed)
results_naive = test_scaling_qbits(State.new_zero_state
, nstart
, nstop
, ngates_per_qbit
, ncircuits
, repeat=10)
np.random.seed(seed)
results_graph = test_scaling_qbits(GraphState.new_zero_state
, nstart
, nstop
, ngates_per_qbit
, ncircuits
, repeat=10)
np.savetxt("qbit_scaling_naive.csv", results_naive)
print("saved naive results to qbit_scaling_naive.csv")
np.savetxt("qbit_scaling_graph.csv", results_graph)
print("saved graph results to qbit_scaling_graph.csv")
meta = {"nstart": nstart
, "nstop": nstop
, "ncircuits": ncircuits
, "ngates_per_qbit": ngates_per_qbit
, "seed": seed}
with open("qbit_scaling_meta.json", "w") as fout:
json.dump(meta, fout)
print("saved meta data to qbit_scaling_meta.json")