bachelor_thesis/notes/chapters/stabilizer.tex

410 lines
20 KiB
TeX

\section{The Stabilizer Formalism and VOP-Free Graph States}
\subsection{Stabilizers and Stabilizer States}
This chapter discusses the stabilizer formalism that was introduced by Gottesman\cite{gottesman1997}
for quantum error correction but soon proved to be a useful tool to describe a subset of states:
the stabilizer states which can be simulated in polynomial time \cite{gottesman2008}.
\begin{definition}
\begin{equation}
p \in P_n \Rightarrow p = \bigotimes\limits_{i=0}^n p_i \\
\forall i: p_i \in P := \{\pm 1, \pm i\} \cdot \{I, X, Y, Z\}
\end{equation}
Where $X = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right)$,
$Y = \left(\begin{array}{cc} 0 & i \\ -i & 0\end{array}\right)$ and
$Z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right)$ are the Pauli matrices and
$I$ is the identity.
$p \in P_n$ is called a multi-local Pauli operator.
\end{definition}
\begin{definition}
For a group $G$, $g_1, ..., g_n$ are called the generators of $G$ iff $\forall g \in G: g = \prod\limits_{i \in J} g_i$ for a
subsed $J$ of $I = \{1, ..., n\}$. We write $G = \langle g_i \rangle_i$ if G is generated by the $g_i$. The generators $g_i$ are chosen
to be the smallest set of generators of $G$.
\end{definition}
The notation $\langle g_i \rangle_i \equiv \langle g_i \rangle_{i \in I}$ is used used as a shorthand
notation for $\langle \{g_i\}_{i \in I} \rangle$.
\begin{definition}
\label{def:stabilizer}
For a $n$ qbit state $\ket{\psi}$ $\langle S^{(i)} \rangle_{i}$ is called the stabilizer of $\ket{\psi}$ if
\begin{enumerate}
\item{$\forall i = 1, ..., n$ $S^{(i)} \in P_n$}
\item{$\forall i,j = 1, ..., n$ $[S^{(i)}, S^{(j)}] = 0$ $S^{(i)}$ and $S^{(j)}$ commute}
\item{$\forall i = 1, ..., n$ $S^{(i)}\ket{\psi} = +1 \ket{\psi}$}
\end{enumerate}
\end{definition}
\begin{lemma}
For every $\langle S^{(i)} \rangle_i$ fulfilling the first two conditions in definition \ref{def:stabilizer} there exists
a (up to a global phase) unique state $\ket{\psi}$ fulfilling the third condition. This state is called stabilizer state.
\end{lemma}
\begin{proof}
All multi-local Pauli operators are hermitian (observables in terms of quantum mechanics), as the $S^{(i)}$
commute they have a common set of eigenstates. Because each $S^{(i)}$ has eigenvalues $+1, -1$, there
exist $2^n$ eigenstates, one state $\ket{\psi}$ with eigenvalue $+1$ for all $S^{(i)}$. As the dimension of $n$ qbits is $2^n$
the state $\ket{psi}$ is unique up to a global phase.
\end{proof}
One can study the dynamics of stabilizer states using only the stabilizers\cite{nielsen_chuang_2010}. Two important
cases are the unitary transformation of a state and the measurement of a qbit. When applying a unitary gate to a stabilizer
state $\ket{\psi}$ the resulting state will in general be no stabilizer state anymore, however there exists a group of
transformations that map stabilizers to other stabilizers: the Clifford group.
\begin{definition}
\begin{equation}
C_n := \{U \in SU(2) | UpU^\dagger \in P_n \forall p \in P_n\}
\end{equation}
is called the Clifford group on $n$ qbits.
$C_1$ is called the local Clifford group.
\end{definition}
The properties of this group will be discussed later, for the time being is existence is enough.
\begin{lemma}
Let $\ket{\psi}$ be stabilized by $\langle S^{(i)} \rangle_i$, then $U\ket{\psi}$ is stabilized
by $\langle US^{(i)}U^\dagger \rangle_i$.
\end{lemma}
\begin{proof}
$$ U\ket{\psi} = US^{(i)}\ket{\psi} = US^{(i)}U^\dagger U\ket{\psi}$$
So $U\ket{\psi}$ is a $+1$ eigenstate of $US^{(i)}U^\dagger$.
\end{proof}
This is an important insight that is used for simulations\cite{gottesman_aaronson2008}, as
updating the $n$ stabilizers that are a tensor product of $n$ Pauli matrices scales with roughly
$\mathcal{O}(n^2)$ instead of $\mathcal{O}(2^n)$ for the state vector approach.
Every qbit can be measured in the $X, Y$ or $Z$ basis which is a projection using
\begin{equation}
\frac{I + (-1)^s g_a}{2}
\end{equation}
Where $g_a \in \{Z_a, Y_a, X_a\}$ and $s \in \{0, 1\}$. How the stabilizers change when
measuring a qbit is given by the following lemma:
\begin{lemma}
\label{lemma:stab_measurement}
Let $J := \{ S^{(i)} | [g_a, S^{(i)}] \neq 0\}$. Then
\begin{enumerate}
\item{If $J = \{\}$, one value is measured with probability $1$ and the stabilizers are unchanged.}
\item{If $J \neq \{\}$, $1$ and $0$ are measured with probability $\frac{1}{2}$ and after choosing
a $j \in J$ the new state $\ket{\psi'}$ is stabilized by
\begin{equation}
\langle \{(-1)^s g_a\} \cup \{S^{(i)} S^{(j)} | S^{(i)} \in J \setminus \{S^{(j)}\} \} \cup J^c\rangle
\end{equation}}
\end{enumerate}
\end{lemma}
\begin{proof}
\begin{enumerate}
\item{As $g_a$ commutes with all stabilizers, $\ket{\psi}$ is an eigenstate of $g_a$,
so the result of the measurement is deterministic and $\ket{\psi}$ is left unchanged.}
\item{As $g_a$ is a Pauli operator and $S^{(i)} \in J$ are multi-local Pauli operators,
$S^{(i)}$ and $g_a$ anticommute. Choose a $S^{(j)} \in J$. Then
\begin{equation}
\begin{aligned}
P(s=+1) &= \hbox{Tr}\left(\frac{I + g_a}{2}\ket{\psi}\bra{\psi}\right) \\
&= \hbox{Tr}\left(\frac{I + g_a}{2}S^{(j)} \ket{\psi}\bra{\psi}\right)\\
&= \hbox{Tr}\left(S^{(j)}\frac{I - g_a}{2}\ket{\psi}\bra{\psi}\right)\\
&= \hbox{Tr}\left(\frac{I - g_a}{2}\ket{\psi}\bra{\psi}S^{(j)}\right)\\
&= \hbox{Tr}\left(\frac{I - g_a}{2}\ket{\psi}\bra{\psi}\right)\\
&= P(s=-1)
\end{aligned}
\notag
\end{equation}
With $P(s=+1) + P(s=-1) = 1$ follows $P(s=+1) = \frac{1}{2} = P(s=-1)$.
Further for $S^{(i)},S^{(j)} \in J$
\begin{equation}
\begin{aligned}
\frac{I + (-1)^sg_a}{2}\ket{\psi} &= \frac{I + (-1)^sg_a}{2}S^{(j)}S^{(i)} \ket{\psi} \\
&= S^{(j)}\frac{I + (-1)^{s + 1}g_a}{2}S^{(i)} \ket{\psi} \\
&= S^{(j)}S^{(i)}\frac{I + (-1)^{s + 2}g_a}{2}\ket{\psi} \\
&= S^{(j)}S^{(i)}\frac{I + (-1)^sg_a}{2}\ket{\psi}
\end{aligned}
\notag
\end{equation}
the state after measurement is stabilized by $S^{(j)}S^{(i)} i,j \in J$, and by
$S^{(i)} \in J^c\setminus\{a\}$. $g_a$ trivially stabilizes $\ket{\psi'}$.
}
\end{enumerate}
\end{proof}
\subsection{The Vertex Operator-Free Graph States}
In order to understand some essential transformations of graph states it is necessary
to study the vertex operator-free graph states first, partially because the graph states as used in this paper
were derived from the vertex operator-free graph states.
\begin{definition}
\label{def:vop_free_g_state}
A $n$ qbit vertex operator-free graph state $\ket{\overline{G}}$ is associated with a graph $\bar{G} = (V, E)$
by the $n$ operators
\begin{equation}
K^{(i)}_G := X_i \left(\prod\limits_{\{i, j\} \in E} Z_j\right)
\end{equation}
for all $i \in V$ where for some operator $O$ $O_i$ indicates that it acts on the $i$-th qbit.
$\ket{\overline{G}}$ is the $+1$ eigenstate of all $n$ $K^{(i)}_G$.
\end{definition}
\begin{corrolary}
All $K^{(i)}_G$ commute and are hermitian. Therefore they have a common set of eigenstates
(in particular definition \ref{def:vop_free_g_state} is well defined).
In terms of quantum mechanics $K^{(i)}_G$ are observables.
Further as $\ket{\overline{G}}$ is a $+1$ eigenstate of all $n$ $K^{(i)}_G$ which are
multi-local Pauli operators, $\{K^{(i)}_G | i \in \{0, ..., n-1\}\}$ is the stabilizer
of $\ket{\overline{G}}$ and $\ket{\overline{G}}$ is a stabilizer state.
\end{corrolary}
\begin{proof}
As $X_i$ and $Z_i$ are hermitian their product is hermitian.
Consider the case $\{i,j\} \notin E$ first:
\begin{equation}
\begin{aligned}
\left[K^{(i)}_G, K^{(j)}_G\right] = \left[X_i \prod\limits_{\{i, n\} \in E} Z_n, X_j \prod\limits_{\{j, m\} \in E} Z_m\right] = 0
\end{aligned}
\end{equation}
As operators acting on different qbits commute. The case $\{i,j\} \in E$ is slightly less trivial:
\begin{equation}
\begin{aligned}
\left[K^{(i)}_G, K^{(j)}_G\right] &= \left[X_i \left(\prod\limits_{\{i, n\} \in E, n \neq j} Z_n\right) Z_j, X_j \left(\prod\limits_{\{j, m\} \in E, m \neq i} Z_m\right) Z_i\right] \\
&= \left[X_i Z_j \prod\limits_n Z_n, X_j Z_i \prod\limits_m Z_m\right]\\
&= \left(X_i Z_j X_j Z_i - X_j Z_i X_i Z_j\right) \prod\limits_n Z_n \prod\limits_m Z_m \\
&= \left(Z_j X_j X_i Z_i - X_j Z_j Z_i X_i\right) \prod\limits_n Z_n \prod\limits_m Z_m \\
&= \left((-1)^2X_j Z_j Z_i X_i - X_j Z_j Z_i X_i\right) \prod\limits_n Z_n \prod\limits_m Z_m \\
&= 0
\end{aligned}
\end{equation}
as $X$, $Z$ anticommute.
\end{proof}
\begin{lemma}
\begin{equation}
\ket{\overline{G}} = \left(\prod\limits_{\{i,j\} \in E} CZ_{i,j} \right) \left(\prod\limits_{l \in V} H_l\right) \ket{0}
\end{equation}
In particular definitions \ref{def:vop_free_g_state} and \ref{def:graph_state} are consistent, when there are no
vertex operators on the graph state $\ket{G}$.
\end{lemma}
\begin{proof}
Let $\ket{+} := \left(\prod\limits_{l \in V} H_l\right) \ket{0}$ as before. Note that for any $X_i$ $X_i \ket{+} = +1 \ket{+}$.
Set $\ket{\tilde{G}} := \left(\prod\limits_{\{i,j\} \in E} CZ_{i,j} \right)\ket{+}$.
\begin{equation}
\begin{aligned}
K_G^{(i)} \ket{\tilde{G}} & = X_i \left(\prod\limits_{\{i,j\} \in E} Z_j\right)\left(\prod\limits_{\{l,j\} \in E} CZ_{l,j} \right) \ket{+} \\
& = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)X_i\prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + \ket{1}\bra{1}_j \otimes Z_l\right) \ket{+} \\
& = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)\prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + (-1)^{\delta_{i,l}}\ket{1}\bra{1}_j \otimes Z_l\right) X_i \ket{+} \\
& = \prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + (-1)^{2\delta_{i,l}}\ket{1}\bra{1}_j \otimes Z_l\right) \ket{+} \\
& = \prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + \ket{1}\bra{1}_j \otimes Z_l\right) \ket{+} \\
& = +1 \ket{\tilde{G}}
\end{aligned}
\end{equation}
as $X, Z$ anticommute and $Z\ket{1} = -1\ket{1}$.
\end{proof}
\begin{definition}
Let $\bar{G} = (V, E)$ be a graph as in definition \ref{def:vop_free_g_state}.
For a vertex $i \in V$ $n_i := \{j \in V | \{i,j\} \in E\}$ is called the neighbourhood
of $i$.
\end{definition}
\begin{lemma}
Let $\bar{G}$, $\ket{\bar{G}}$, $K_G^{(i)}$ be as in definition \ref{def:vop_free_g_state} and for
a vertex $a \in V$ set
\begin{equation}
M_a := \sqrt{-iX_a} \prod\limits_{j\in n_a} \sqrt{iZ_j}
\end{equation}
Then the graph $\bar{G}'$ associated with $\ket{\bar{G}'} = M_a\ket{\bar{G}}$ is changed according to
the following equations:
\begin{equation}
\begin{aligned}
n_a' &= n_a \\
n_j' &= n_j, \hbox{ if } j \notin n_a\\
n_j' &= (n_j \cup n_a) \setminus (n_j \cap n_a), \hbox{ if } j \in n_a
\end{aligned}
\end{equation}
I.e. the neighbourhood of $a$ is toggled.
\end{lemma}
\begin{proof}
$\ket{\bar{G}'}$ is stabilized by $\langle M_a K_G^{(i)} M_a^\dagger \rangle_i$, so it is sufficient
to study how the $ K_G^{(i)}$ change under $M_a$.
At first note that $[K_G^{(a)}, M_a] = 0$ and $\forall i\in V\setminus n_a$ $[K_G^{(i)}, M_a] = 0$,
so the first two equations follow trivially. For $j \in n_a$ set
\begin{equation}
\begin{aligned}
S^{(j)} &= M_a K_G^{(j)} M_a^\dagger \\
&= \sqrt{-iX_a} \left(\prod\limits_{l \in n_a \setminus \{j\}} \sqrt{iZ_l}\right)
\sqrt{iZ_j} K_G^{(j)} \sqrt{iZ_j}^\dagger
\left(\prod\limits_{l \in n_a \setminus \{j\}} \sqrt{iZ_l}^\dagger\right)
\sqrt{-iX_a}^\dagger \\
&= \sqrt{-iX_a} \left(\prod\limits_{l \in n_a \setminus \{j\}} \sqrt{iZ_l}\right)\sqrt{iZ_j}
X_j \left(\prod\limits_{m \in n_j \setminus \{a\}} Z_m\right) Z_a
\sqrt{iZ_j}^\dagger
\left(\prod\limits_{l \in n_a \setminus \{j\}} \sqrt{iZ_l}^\dagger\right)
\sqrt{-iX_a}^\dagger \\
&= \sqrt{iZ_j} X_j\sqrt{iZ_j}^\dagger\left(\prod\limits_{m \in n_j \setminus \{a\}} Z_m\right)
\sqrt{-iX_a} Z_a \sqrt{-iX_a}^\dagger \\
&= (-1)^2 Y_j Y_a \left(\prod\limits_{m \in n_j \setminus \{a\}} Z_m\right)\\
&= (-1)i^2 Z_j X_a X_j Z_a \left(\prod\limits_{m \in n_j \setminus \{a\}} Z_m\right)
\end{aligned}
\end{equation}
One can now construct a new set of $K_{G'}^{(i)}$ s.t. $M_a \ket{\bar{G}}$ is the $+1$ eigenvalue
of the new $K_{G'}^{(i)}$. It is clear that $\forall j \notin n_a$ $K_{G'}^{(j)} = K_G^{(j)}$.
To construct the $K_{G'}^{(i)}$ let for some $j \in n_a$ $n_a = \{j\} \cup I$ and $n_j = \{a\} \cup J$.
Then
\begin{equation}
\begin{aligned}
S^{(j)} &= Z_j X_a X_j Z_a \prod\limits_{l \in J} Z_l\\
&= Z_j X_a X_j Z_a \left(\prod\limits_{l \in J} Z_l\right)
\left(\prod\limits_{l \in I}Z_l\right)
\left(\prod\limits_{l \in I}Z_l\right) \\
&= Z_j X_a X_j Z_a \left(\prod\limits_{l \in ((I\cup J) \setminus (I\cap J))} Z_L\right)
\left(\prod\limits_{l \in I}Z_l\right) \\
&= K_{G'}^{(a)} K_{G'}^{(j)} \\
&= K_{G}^{(a)} K_{G'}^{(j)}
\end{aligned}
\end{equation}
Using this ine can show that $\ket{\bar{G}'}$ is a $+1$ eigenstate of $K_{G'}^{(j)}$:
\begin{equation}
\ket{\bar{G}'} = S^{(j)}\ket{\bar{G}'} = K_{G}^{(a)} K_{G'}^{(j)}\ket{\bar{G}'}
= K_{G'}^{(j)}K_{G}^{(a)}\ket{\bar{G}'} = K_{G'}^{(j)}\ket{\bar{G}'}
\end{equation}
Because $\{K_G^{(i)} | i \notin n_a\} \cup \{S^{(i)} | i\in n_a\}$ and
$\{K_G^{(i)} | i \notin n_a\} \cup \{K_{G'}^{(i)} | i\in n_a \}$ are both $n$ commuting
multi-local Pauli operators where the $S^{(i)}$ can be generated from the $K_{G'}^{(i)}$
and $\ket{\bar{G}'}$ is a $+1$ eigenstate of $K_{G'}^{(j)}$
$\langle\{K_G^{(i)} | i \notin n_a\} \cup \{K_{G'}^{(i)} | i\in n_a \}\rangle$
are the stabilizers of $\ket{\bar{G}'}$ and the associated graph is changed as given
in the third equation.
\end{proof}
These insights can be used to understand how measurement works on the vop-free graph state \cite{nielsen_chuang_2010}:
Consider a state $\ket{\psi}$ that is stabilized by $g_1, ... g_n$ and a Pauli operator $g \in \{Z_a, Y_a, X_a\}$
that is to be measured.
Recalling lemma \ref{lemma:stab_measurement} the following relations follow immideately:
\begin{enumerate}
\item{For $g = X_a$ if $a$ is an isolated qbit $+1$ is measured with probability $1$
and the state $\ket{\bar{G}}$ is unchanged.}
\item{For $g = X_a$ and $a$ is non-isolated, choose $b \in n_a$ and the new stabilizers are
\begin{equation}
\langle \{(-1)^sX_a\}
\cup \{K_G^{(b)}K_G^{(i)} | i \in n_a \setminus \{b\}\}
\cup \{K_G^{(i)} | i \in V \setminus n_a \setminus \{a\}\} \rangle
\end{equation}}
\item{For $g = Z_a$ the new stabilizers are
\begin{equation}
\langle \{(-1)^sZ_a\}
\cup \{K_G^{(i)} | i \in V \setminus n_a\} \rangle
\end{equation}}
\item{For $g = Y_a$ the new stabilizers are
\begin{equation}
\langle \{(-1)^sY_a\}
\cup \{K_G^{(a)}K_G^{(i)} | i \in n_a\}
\cup \{K_G^{(i)} | i \in V \setminus n_a \setminus \{a\}\} \rangle
\end{equation}}
\end{enumerate}
The states after the measurement are in general no vop-free graph states anymore,
the following discussion will allow to construct new vop-free graph states and
Clifford transformations from the vop-free graph state to the resulting state.
In the case $g = X_a$ and $n_a = \{\}$ the graph is obviously unchanged.
\begin{lemma}
\label{lemma:Z_measurement}
\begin{enumerate}
\item{For a result $+Z_a$ the new state is
$\ket{+_Z}_a \otimes \ket{\bar{G}'}$
with $\ket{\bar{G}'}$ being stabilized by $K_G^{(i)}$ for
$i \notin n_a$ and $Z_aK_G^{(i)}$ for $i \in n_a$.
}
\item{For a result $-Z_a$ the new state is $U\ket{-_Z}_a \otimes \ket{\bar{G}'}$
with $\ket{\bar{G}'}$ being stabilized by $K_G^{(i)}$ for $i \notin n_a$ and $Z_aK_G^{(i)}$ for $i \in n_a$
and $U = \prod\limits_{i \in n_a}Z_i$.}
\end{enumerate}
\end{lemma}
\begin{proof}
\begin{enumerate}
\item{
It is trivial that $Z_a$ and $K_G^{(i)} i \neq a$ stabilize $\ket{+_Z}_a \otimes \ket{\bar{G}'}$.
$Z_aK_G^{(i)}$ for $i \in n_a$ do not act on $a$, so $\ket{\bar{G}'}$ is well-defined.
}
\item{
The state $\ket{-_Z}_a \otimes \ket{\bar{G}'}$ is the $-1$ eigenstate of $K_G^{(i)}$ for all
$i \in n_a$. This can be corrected by transforming $K_G^{(i)}$ to $-K_G^{(i)} = Z_i K_G^{(i)} Z_i^\dagger$
which stabilizes the state $U\ket{-_Z}_a \otimes \ket{\bar{G}'}$.
}
\end{enumerate}
\end{proof}
\begin{lemma}
When $Y_a$ is measured with a result $s \in \{0, 1\}$ the state after the measurement is
\begin{equation}
\ket{(-1)^s_Y}_a \otimes U_{Y,s} \ket{\bar{G}'}
\end{equation}
\begin{equation}
U_{Y,s} = \prod\limits_{l \in n_a} \sqrt{(-1)^s iZ_l}
\end{equation}
Where $\ket{\bar{G}'}$ is associated with the graph $G' = (V \setminus \{a\}, E')$
with $E'$ being changed according to $\forall i \in n_a$ $n_i' = (n_i \cup n_a) \setminus (n_i \cap n_a) \setminus \{a\}$.
\end{lemma}
\begin{proof}
It is known that $(-1)^s Y_a$ has to stabilize the state after measurement,
further $\forall j \in n_a$ $S^{(j)} = K_G^{(a)} K_G^{(j)}$, are the stabilizers of the new
state around the measured qbit and the stabilizers $K_G^{(j)}, j \notin n_a$ are unchanged.
Let $j \in n_a$ and $n_a =: \{j\} \cup I$, $n_j =: \{a\} \cup J$.
\begin{equation}
\begin{aligned}
S^{(i)} &= K_G^{(a)} K_G^{(j)} \\
&= X_a \left(\prod\limits_{l \in n_a} Z_l\right)X_j\left(\prod\limits_{l\in n_j} Z_l\right) \\
&= X_a Z_a Z_j X_j \left(\prod\limits_{l \in I} Z_l\right)\left(\prod\limits_{l \in J} Z_l\right)\\
&= X_a Z_a Z_j X_j \left(\prod\limits_{l \in (I \cup J)\setminus(I\cap J)} Z_l\right) \\
&= iY_a Z_j X_j \left(\prod\limits_{l \in (I \cup J)\setminus(I\cap J) \setminus \{a\}} Z_l\right) \\
&= (-1)^si S^{(a)} Z_j X_j \left(\prod\limits_{l \in (I \cup J)\setminus(I\cap J)\setminus\{a\}} Z_l\right) \\
&= S^{(a)} \sqrt{(-1)^siZ_j} K_{G'}^{(j)} \sqrt{(-1)^siZ_j}^\dagger
\end{aligned}
\end{equation}
with $G'$ as above, the rest of the argument is analogous to lemma \ref{lemma:Z_measurement}.
\end{proof}