bachelor_thesis/thesis/chapters/graph_simulator.tex
2019-11-01 19:07:45 +01:00

144 lines
5.8 KiB
TeX

\section{The Graph Simulator}
\subsection{Introduction to the Graph Formalism}
The first step towards the simulation in the graph formalism has been
the discovery of the stabilizer states and stabilizer circuits \cite{gottesman2009}\cite{gottesman1997}.
They led to the faster simulation using stabilizer tableaux\cite{gottesman_aaronson2008} and later
to the graph formalism\cite{schlingenmann2001}\cite{andersbriegel2005}\cite{vandennest_ea2004}.
The following discussion eludicates the graph formalism and explains how the graph simulator works.
Some parts will be kept short as they can be looked up in \cite{andersbriegel2005}.
\begin{definition}
\begin{equation}
p \in P_n \Rightarrow p = \bigotimes\limits_{i=0}^n p_i \\
\forall i: p_i \in P := \{\pm 1, \pm i\} \cdot \{I, X, Y, Z\}
\end{equation}
Where $X = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right)$,
$Y = \left(\begin{array}{cc} 0 & i \\ -i & 0\end{array}\right)$ and
$Z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right)$ are the Pauli matrices and
$I$ is the identity.
\end{definition}
\begin{definition}
Let $p_i \in P_n \forall i = 1, ..., n$, $[p_i, p_j] = 0 \forall i,j$ be commuting multi-local Pauli operators.
Then a $n$ qbit state $\ket{\psi}$ is called a stabilizer state iff
\begin{equation}
\forall i: p_i\ket{\psi} = +1\ket{\psi}
\end{equation}
\end{definition}
%A $n$ qbit graph or stabilizer state is a $+1$ eigenstate of some $ p \in P_n$ where $P_n$ is the Pauli group\cite{andersbriegel2005}.
\begin{definition}
\begin{equation}
C_n := \{U \in SU(2) | UpU^\dagger \in P_n \forall p \in P_n\}
\end{equation}
is called the Clifford group on $n$ qbits.
$C_1 =: C_L$ is called the local Clifford group.
\end{definition}
One can show that the Clifford group $C_n$ can be generated using the elements of $C_L$ acting on all qbits and
the controlled phase gate $CZ$ between all qbits\cite{andersbriegel2005}. It is worth noting that the $CX$ gate can be
generated using $CZ$ and $C_L$ gates.
\begin{lemma}
Let $a \in C_L$ then $\forall \phi \in [0, 2\pi)$ also $\exp(i\phi)a \in C_L$.
\textbf{Note}: This is also true for $C_n \forall n >= 1$.
\end{lemma}
\begin{proof}
Let $a' := \exp(i\phi)a$. $a' \in C_L$ iff $a'pa^{\prime\dagger} \in P \forall p \in P$.
\begin{equation}
\begin{aligned}
a'pa^{\prime\dagger} &= (\exp(i\phi)a)p(\exp(i\phi)a)^\dagger \\
& = \exp(i\phi)ap\exp(-i\phi)a^\dagger \\
& = \exp(i\phi)\exp(-i\phi) apa^\dagger \\
& = apa^\dagger \in P
\end{aligned}
\end{equation}
\end{proof}
\begin{lemma}
One cannot measure phases by projecting states.
\end{lemma}
\begin{proof}
Let $\ket{\psi}$ be a state, $\ket{\varphi}\bra{\varphi}$ a projector. $\ket{\psi'} := \exp(i\phi)\ket{\psi}$ for some $\phi \in [0, 2\pi)$.
\begin{equation}
\begin{aligned}
\bra{\psi'}\ket{\varphi}\bra{\varphi}\ket{\psi'} &= \exp(-i\phi)\bra{\psi}\ket{\varphi}\bra{\varphi}\exp(i\phi)\ket{\psi} \\
& = \exp(-i\phi)\exp(i\phi)\bra{\psi}\ket{\varphi}\bra{\varphi}\ket{\psi} \\
& = \bra{\psi}\ket{\varphi}\bra{\varphi}\ket{\psi}
\end{aligned}
\end{equation}
\end{proof}
\begin{definition}
A phase $\phi \in [0, 2\pi)$ is called qbit-global, if for some qbit states $\ket{\psi}, \ket{\varphi}$ $\ket{\psi} = \exp(i\phi)\ket{\varphi}$.
\end{definition}
\begin{lemma}
When entangling qbits via projections one can disregard qbit-global phases.
Two qbits are entangled via projection, if for some single qbit gates $M,N$
and two orthonormal states $\ket{a}, \ket{b}$
\begin{equation}
C^{M,N}(i,j) = \ket{a}\bra{a}_j \otimes M_i + \ket{b}\bra{b}_j \otimes N_i
\end{equation}
\textbf{Remark.}
In particular when entangling states using $CX$ and $CZ$ one can disregard qbit-global phases.
This is immideatly clear when recalling \eqref{eq:CX_pr} and \eqref{eq:CZ_pr}.
\end{lemma}
\begin{proof}
Let $\alpha, \beta \in [0, 2\pi)$ be some phases, $\ket{\psi}, \ket{\varphi}, \ket{\psi'} := \exp(i\alpha)\ket{\psi}, \ket{\varphi'} := \exp(i\beta)\ket{\varphi}$ some single qbit states,
$M, N, \ket{a}, \ket{b}, C^{M,N}(i,j)$ as defined above.
\begin{equation}
\begin{aligned}
C^{M,N}(1, 0) (\ket{\psi'}\otimes\ket{\varphi'}) & = \ket{a}\braket{a}{\varphi'}\otimes M\ket{\psi'} + \ket{b}\braket{b}{\varphi'} \otimes N\ket{\psi'} \\
& = \exp(i\beta)\ket{a}\braket{a}{\varphi}\otimes\exp(i\alpha)M\ket{\phi} + \exp(i\beta)\ket{b}\braket{b}{\varphi}\otimes\exp(i\alpha)N\ket{\phi}\\
& = \exp(i(\beta + \alpha))(\ket{a}\braket{a}{\varphi}\otimes M\ket{\psi} + \ket{b}\braket{b}{\varphi} \otimes N\ket{\psi})\\
& = \exp(i(\beta + \alpha))C^{M,N}(1, 0) (\ket{\psi}\otimes\ket{\varphi})
\end{aligned}
\end{equation}
Where $\exp(i(\beta + \alpha))$ is a multi-qbit-global phase which can be (following the above argumentation) disregarded.
\end{proof}
\begin{corrolary}
One can disregard global phases of elements of the $C_L$ group.
\end{corrolary}
\begin{proof}
As it has been shown above a quantum computer cannot measure global phases. Also
the entanglement gates $CX, CZ$ map qbit-global phases to multi-qbit-global phases which cannot
be measured. It has been shown above that one can choose the $C_L$ operators such that they do not yield
a phase.
\end{proof}
\subsection{Graph Storage}
One of the gread advantages of simulating in the graph formalism is a great increase
in simulation performance and a lower memory requirement. The simulation of
at least $10^6$ qbits on a common desktop computer should be possible\cite{andersbriegel2005}.
Therefore one has to take care when choosing a representation of the graph state.
The following
FIXME
\subsection{Usage}
FIXME
\subsection{Performance}
FIXME