30 lines
1.0 KiB
Python
30 lines
1.0 KiB
Python
import matplotlib.pyplot as plt
|
|
import matplotlib
|
|
import numpy as np
|
|
import json
|
|
|
|
matplotlib.rcParams.update({'errorbar.capsize': 2})
|
|
|
|
results_naive = np.genfromtxt("qbit_scaling_naive.csv")
|
|
results_graph = np.genfromtxt("qbit_scaling_graph.csv")
|
|
with open("qbit_scaling_meta.json") as fin:
|
|
meta = json.load(fin)
|
|
|
|
|
|
h0 = plt.errorbar(results_naive[:, 0], results_naive[:, 2], results_naive[:, 3]
|
|
, label=f"Dense Vector Simulator $N_c={int(results_naive[:, 1][0])}$ circuits"
|
|
, marker="o"
|
|
, color="black")
|
|
h1 = plt.errorbar(results_graph[:, 0], results_graph[:, 2], results_graph[:, 3]
|
|
, label=f"Graphical Simulator $N_c={int(results_graph[:, 1][0])}$ circuits"
|
|
, marker="^"
|
|
, color="black")
|
|
|
|
plt.legend(handles=[h0, h1])
|
|
plt.xlabel("Number of Qbits $N_q$")
|
|
plt.ylabel("Execution time per circuit [s]")
|
|
plt.title(f"Execution Time for ${meta['ngates_per_qbit']}\\times N_q$ Gates with random Circuits (rescaled)")
|
|
|
|
plt.savefig("scaling_qbits_linear.png", dpi=400)
|
|
plt.show()
|