7708 lines
1.1 MiB
7708 lines
1.1 MiB
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAADFcAAAA/CAYAAACfdcacAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2djdXURrKGgeMAvL4Z4AzAG8FCBrAbgXEG5jgCDs4AHMFeyMBsBDZkYDJYXzLwrZpPGvVILan/u7rq1Tn6PqnVP1VPvd0tzUij+/fu3XtC66+0rpfPf/3117frxPv370flX5fHfhkCFIePVNMjT23PKW7vPelIAgGTBDBmjRd2ieMbdCRbRxI1I5uYHevQd/vEWmKfhBb6aMFtVaIuXPuw3Z4A+mV75jEtSuuz0EtM9NrnlaYXJgDNtNdBbosSdZTrE8qDQA0CGN9qUI2vE2NWPLNRSqCPjRKpWzvRJ295YA8EQAAELBHA3K072pjjdccX3oEACJQngHmxPNMRapQ2X0KHI6hGr42x/eEo/1cOpqfONm/+udpf78bmX5fHfh6B76n4N6sqfA/JrLJgFwTMEsCYNU7oJY9v0JFMHUnWjExi9qxC320bc8l9ElpoqwW3Ncm6cO3EdnsC6JftmYe0KLXPQi8h0WufR6pemAQ0014PqS1K1lGqTygHAjUJYHyrSfe8boxZ54xGz4E+NlYE0SfHihesBQEQAIEaBDB316Dav07M8f1jAAtAAATGJIB5ccy4pVotdb6EDlMjinI5BGL7w27+68MV9LaDDzEWxeYPqZueAvnrLB+1e/8sj8Tj5Ns7suvZmW2h/lG+T+u6qI0v6zTsgwAI3BGoMWbNbEv377le6f9rjdmSx7fSOtKunVb+SdaM9H5sxb7SfXfNrZXW1+3W2C8xtkvuk6W1oCn2KXqK8V+yLlJ8R5lyBEr3S9eyGI265TRux7KQ2mdr6CWWjTZ9kP/Zn8VJ1QvHqoZmZg1Y187Mgf+XYCFZR66v2AYBKQRqjm97PpaYM/bq7p0eO45hzOodsfrt9+hjrlexmnTLjrydOs6gT44cddgOAiAAAmUI9Jy7rc7bc+Rq+o85fqaM/yAAAiAQRwDzYhwvCblz5lOp82VPHUqIKWzoQyC2Pxzlf9DHhW2rNEC8oNQfyNj7R+u2pPyUybdfj/yaj8n3BhaCAAi4BKz2b81jthvfmtvataPdv5raQN1jEdCkdYztcdrTFPs4z+9yW/c/hRnKtCUAjS68wWJhsd6yzmbyX+VncetYl963rh2XJ1i4NLANAnoJaJ4zMI7p1e2onlnVpOZxZlQtwm4QAAEQAIFzAlbn7ZmMdf9nDvgPAiAAAiBwRwDzQpoSwC2NG0rFESCdfU3rQ18pSn+2d8yXv2Xa2m7a/7FV+9c3V7Rq8KCd5/SAwfpVMAfZhzqk2behAgFjQaACAav926rfJSWknWG0f3xCRIC/ofOBzyVBoy4QqEwgWuuV7cmpPsoX9Nl7UbxyAiO0rHX/hYYFZjkEoNEFBlgsLNZb1tlE+4/5/yqhaHbXkvo2ollAR+1FAObnzMHolFF0Xz+tUU4Gzb7JoQxLYghY1aRVv2O0gbzKCeB8JD/AYJjPEDVEE7A+f0X7j34arbFuBRCrbuivDSMGVxTYGIdA9LwwjmtVLQW3qnjrVz7IeP0TkfgvrT+7RMh2finC59x79SYG/6S6+EfdHrttZG7f2E11/0xtvaH/P2TWe1pcxMMV5Cw/TfKGrZ0gMxBe5idlvicYX+6Sxvrr+saWa/PPjcbkm5t02R4hdtJsl2bPJqgHCSPbfuCW9xD5eh27OMPku5rxy+v0nZ9Xv634vMciNV27djL8uzkhSuXbu9zULzZmjDAfboxOSLDkf4bWE8jWLeL6MsUwZD5T0WdTyLq8uHwEs5TmxJXR4v8Utw1freO1JX+1aHQjzoQEsNiHZp2N6z9t80POIXM/AzU7/89qctlxWiS/uRoV/zNYDKGjKbabWK3PFaZ8Nb402LSdkdCV+ciMQnWQERvxRYmB2s8CXd84EFO8Q+dEMbEbXaej219SCFo0GcvE9XvSw3D9cO3zyLqWZnspe6Z6cM62FmvE/sgMS+koAtdhVmn2HBq7Ojiy7StXsneJxfU8mSub2Aw/h4WCyfC/6/VpqH++fCX1P9WFeckHulHayDEoqcUSuKXZU8Kn0Dos+75mRCxMz4trHqH74HZOaupnmDPPUR3moO81Xq4zTGyf0rHn62Mx+1TPI8r/ZCrD3zmeLlQm6AEJn91U+Tsq/3rn2GnboRlEPFxBxnKA5rdWsNPXp0oYIh3/SOu3oU4Jy+f6xqZp88/FzXGaH4iZ09/SxjWec6LA/+/IprmDz+Z9oI1Zl3Naq/9g2Yp0XjuW+rdLyvVb85jm+lx622XIdWvjmORf7ZOe0kE8qG/kMfzAreBD0ubUYMMTMiZpPaGdFkVcX4LGJEV9NoWvy4vLBzFLaUhoGS3+WxuvMT5PHUrB5wwxQ4OW/hrjc2he62xc/4PnMePz/6wtlx2nBfObK1D0P4nFQDo6PVegOSX6S4Me8e/JXAEjS+dQe/J0+7q2Mc/1jf0f1b/T8WovuELS0c+WQGjR5OJR2Jbr96j9cO3pyP1SWp/MZqngfGStr+b7Chiq03VzESwNSmO5WNZ+y52/uHUtc1goyST/e16fhjp2kC97TuK6FYypB4jGOKQgBtLG4iJ9Ywz1bKyUFouNgQ0TkuaFhvZJbQrcDiKjYLw+8E7EoddkBd+fn7XQ+d0nquATxetZREXr+8yDi1J7H6it17R+TdvVXtrwINiiShnJwZun1qiZF5Tm3uTOAXxIafxF1VCLxze2X41/O8HgAf++s47wYMU9svfGbvJNgt03NpGNEmzaCfuSLJTlYmChLaP9my/01Y7ZhaRxWo2HIZdRMzdo9+80wEuGIcfwxfz0LcwD453HevqtmjEpXcn7JT28OLMZZgr9NzNeY3web3zeH4nCjijsr2GOB+Syzsbjv5l5LEAeh1k87Di/SX6GWByeK9D8+olWfo3250PxGD44OiMr51B7EvX0dTVjnsc3xjCyf4fj1V6MJaRb72dzDBRqcnbt8L/H75H74drXIful0D6ZxXL085G1sHrsj85Qo6576IDbFMqyOQ7P/MU2aJrDDpka9z9rTmKwo4+ph+IY5ODoMRA6Fmf3jUHkc2Om0Fjc2Nhix/i8kIwY3M7RjT5en3tYPwfp7AlrjVZ+GGy9PCHG/AP04pYTu9lettt9zqC4D13fXEEA+BUgPLm6bwfgG8h/L+5p4wp3fGMrVPjXGCeaAwFRBKz27x2/MaZFqHOHIdeggmOqf1SOT3b4Icq/0zlB1qvGGCYWEKhNIFXrte1KqX/Hl8MxyXKf3eHF6A+ZpcRGYhnr/kuMCWy6JQCNLjzAYmGx3rLOZsf/03mMypk/Z99hxxI75bfW4ej7qSygo/aRB/Nz5mC0z2inr6sY83Z8Yxgq/NuPKo5IJWBVkzt+ox9KFSrsqkaA+oL5661cuGCYSxDlYwjszF9chYk5LNV/9NMYlfXNi1j15c+tIwb9YwALwgmkzgvhLejMCW464jrIeM335r+i9eZND2Q7vzmi2lsfCkTYa7dT72+0zXneO2lFN6u/uYKDQOuLHat/onR+M8V1oZsq39LqBo0vQD5TGr86RNQS6xsbP5J/omDDGBBoTMBq/471G2PaVpixDLmGkThW8o9Pdt7S+ozq5wcvsYBAdwKVtN7Fr1hfAsYk1X02lhcHNYBZl9inNGrd/xRmKNOWADS68AaLhcV6yzqbWP8D5zHV8/+soVh2XC6Q39zEMP8rsTChI2FBBvPzgJhmFNvXRxrzYn1jqYzk37m0kUMaAauajPUb/VCacmFPIwKmz0cKMQbDQiBRzR2B2PmLS2mawyr5j346TgdDrPrHCjHoHwNY4BCoNC84LejcBDedcV15JXq8Zg2SvfxgBT/Qz/fgu/fl87E/aRW3nNg928u+sA/VlqoPV5CTHBR+OOINbd/cLDntP6KA7b5WhPLwr1g/o/UxraKWXN/YGcn+1YTNftP6B603mqjZ5sSbn77ilV9zw5qs2rlq+zP5BJYVQJM2ssauOTb0X+T4tYcs128qL3bM3vO5dHouQ7ZHMsca/lGdPBbvnciVDpGo+jjWtDafD88gkE3q5sszn9fHiYGaeSDXFyp/M7bTvuo+m8uLtbRmttaX5H3r/u/FhmNKq6jxmuwxOVZDo4tKwWJhsd6yzibXfyp/M/czX0pTPf/PGsplN7Ha8JvrH+l/DRZWdCQpzmB+Hg3rjHL7OpUXO+bl+sbqkezfubq3OcifrtcQzJNWUddVW0r1Ush3NZ81xVDK9Zt1Q+0N9T1LJB/0yxhgSvOSzk1cb9UMn1aG5FfXMWKOGdlxubdi3rfwn3w2OW/Psa3hP9WJsW4GLPw/YtU/QFpjQH6JmNdSI0z2m72mJd9Nz4sZmgG3VHiDlBthvKZ78+cHKi738K/Q8r3b/IDCzTKNd7/S/7OVz++CFqqL79W+qY8KfrdOo/3LSxxO7J7brP5gyFdzSzX+Tw9OfCCnebDgt1S8dNrhN1a4+86h6xe3nOcx1bMJ4k3mDjs5vrG5xITFJda/0kjJX+6Mv9DKov6O1uDORXmzF2r/I1XyiuJ2eQ3MZM9H+v+U0j5nN9CwArCsD9tq/87xm3RpakzbU2EOQ65TOsca/lGdlzGYfPedyO2hHja99xh+Bo7sUzNfnvl6dLyG1o/aq3ksxxffmKS9z+bw4jj6mNWMb+m6rfvv8pQ8Xlseq6HRRaVgsbBYb1lnk+P/3jxGdZo4Z89hxzrc47fW6Aj7NVhY0ZGk+IL5eTSsM8rp69LHvBzfWDnS/TtX920O8qfL5z3UbtfvhW4p9N2zqskcv7X1w7UC0S/XROzuUz8xcb1VM8IaGfYaI3bixN/fXe6x2DmuLjln/mIYo89hNfzX2E/VCX9yCLHqH1mNMRA2rwUHmezGNS3RqjEvBAdh4IzgNnDwAk0fZbyexjK+f/85bfPLED5NLvK1KI9zN8t0nN/IUWyhOvma4mYhW36l9N12Duye6+F7VS/X03NC6f8PSle4U98rSucn2i/BmP4/dAJ1U4yOX27SZXi0fqF9fvqP0yQuUb6xA4P5V4Q5x5HW57RyR/l3kUoDKyHe/ETT19T29aKf7aE03n8TWI2YbGw7rWDZJiJW+3eU3xbHtAD5RTHk+gbjWNQ/8p3PD/hE7i1t86+RqV16juFnUIm9qvnyzN/A40W1HthmrWxRvhyNSUb6bBQvDtoRs1pBrVivdf/5g8Ju59xHccVYfaVjXqNXEndvAAv+vIXLKRuvHBSbTes6ifL/TBd03Mw5Oykpih0r74zfRp3jJBRlYUxHWVEmVk9ovfxKU05FYH5OD4wujKL6OjHD9zfn0hKTYxpLunw/IvW6qnNwovob2zpYn9vDG+W3Ep/3WHBMu30Oi365G5auB0gTlq63rqzJ7yLnvFyhJoY9x4hrcJwNGje+pXX3R1OdrBo3o+YvBkDxG+lc+SxmRf3X1E/PwI1+HLFKiyBxw7zmQUdcup37esyJSsK58wZX0XlhU7veBHDTG9tRrkP4frxPPKbR/3/N4aB9fshC6j35bKbX7tn+yfY/nP3imw+K1+ipkALBN7HzUyL89gpedt9aQZMqB4xveH9F2/xQBd9k+QOt1V/jQW1ELzG+ceWj+RcNRGaB52TW/MSVa+FvtMMnt/yBFZYwAqZYWu3fMX5jTPN3nBiGXMNoHCv4d3ZC5AeN1NIETI3xIfAqaD2k2Sp5YnwJGJPU99kYXhywAGZV4lqrUuv+1+JaqF6M1QQSGl3UBBYLi/WWdTYx/gfOY+rn/1lDMey4TCC/ufqh/ldgYUZHBQLNn1eW+MwSzM+DYZ5RTF8fbcyL8Y2lMpp/5/K+5MA1RCCoFtmsajLGb6X9cC0v9Ms1EexbPR8pdc7LCtLEEGOEkDEhZv5ik7XNYRX819RPhai0mhmIVRpazGt+bpjX/FyGS60wLwzHIMVgcEuhNlSZEebMD0T0M52r/kj/1z9Ez+nZD1hwHbTyMwH8fABvv6GV28tZjuzmevmtF9cf289paK/sV3sHKqTz0+y/EDR+a8E3NHD4bnbnZvn1xHzCwf+vC+XnByykLqG+sf0j+ieVe6hdPIi99WT+MqXx8aodzdP2qEkWWVrt36F+Y0zb782hDLmGETmW9I9PiP41nVitT+T2CeNIaQIWx/gQhiW1HtJezTyhvpyNSVb6bCgvjtkZs5pxrVW3df9rcc2tF2P1QhAaBYuFwP6WdZ2E+h8yj1mZ/2c1hbLj/CH85npH/F+ShTod0XUsf/HAn1vzHH350oD+/0GfZf9M/yUs3ZmDkQQZBNkQ2tdHHPNCfWNQI/p3FmBcQ5wRan/cqiZD/dbYD9cqQ79cE6m8j/ORfMBgmM8wogaMERGwGmQNnb/YFI1zWEn/u1+fNtBLUBMYU4MwVc2EGFTFu64c89qayNj7JeeFsUnEWQ9ucbyuuTFeX1Ekb9B3FXyPND/o5lv4gQj+foM1mrxQG/zihaw61o0f2U264OcL+AcZud1qy1fVal5VTI68J6c4GP+h9fHq8HWX8v3tujPIRqhv7M6I/g0SBq+Zc0fyHlwSv1k2sbVHwCpLq/071G+MaXs95u4XlUPmPa5hRI6hGgnxj+o6OpHbh4wjxQhYHeNDAJbUekh7NfOE+kL5Ds/HrfTZUF4cszNmNeNaq27r/tfimlMvxupbetDowgMsFhbrLetsQv2nfIdzP3OlPKbO2UPZTWxO+a21OdJ+SRYadUQ+Ff/SoKQ+JDAHo5IRrVcXxQnf3xBe4qBqTMc1RL0+k1NzaH/jNjRpMtRvTT77dIJ+6aNSP410hXO2TMxgmAkwsLiUMWKy4wWZ/S2tkh4eDyRZLlvo/MUtapzDSvpPdZn6bOlIhcQC89IRoAbHEIMGkKkJKfNaG29ttFJyXrBB7M5LcEuPNsbrdHYhJYnvBxqrn9P6cGIdUqxUnpwHI/gNGXsPjJSy716zhysmi/nplKcdAlEM2EFFmn07cFv8ofnBCb5QWy9/Tglfrw9g30vAMkur/duq394OkJionaF2/xLDPmQxy2N8SMA0aV2TLyGxy81jnZd1/3P1U7o8xuotUWh0YQIWC4v1lnU21v1f6yFmH+wWWmCxsMAWCGgmoLmva/btSJO4hjii0/eYVU1a9dtVG/qlSwPbIAACawJSxoif6J6el3STFf/a+DtapbyZb82r1b71+cu6/610hnZAQCMBKfOaRrY9fcK8kEYf3NK4oVRlAnTe/wOd97+m9RVt++6xrmIBt5tSMdnJD4H/2sLWpg9XkEPvyTFe1S2afVMXrK1D/7NNQkoiAZUsrfZvq34nat9bTDtD7f55g2o7UeUYHxJSTVrX5EtI7HLzWOdl3f9c/XQqb2qshkYXlYHFwmK9ZZ2Ndf/XeojZB7uFFlgsLLAFApoJaO7rmn0roElT1xAFeBWpwqomrfqdIBr0ywRoKAIChghUHSPoZqWHxPK3iSf/GmzOL8qqCIv1+cu6/ypEDCdAQDaBqvOabNfHtA7zQlrcwC2NG0q1IUD65AerR/mB+v8le5s8BFLt4QqC/VeN0BKY+zXqjalTs28xHAbJO7+dwmfu/ITsf30HkbYhYIKl1f5t1e+NyjMStDOs5d8ecgnz/Z5tStNNjPEhsaul9R6aruXLHscePu7ZkpJei1dtLmQ3X+T+h9aYi93nZNcnl9Oo/rs+GNg2PVZr0WiJPquFRY0+OyqbErpgnrX834tV7Tlur90a6bXYtWQEHdVQxnGdIbo50wDV8YZa4V+DXS+Xzy3puO/Xmz5RvYevvC5h29qglP1cO6h8kXNdn+25tvnqHCktxP8Uf840n1JnbBnNvsWyoPymryESeFUpYlWTVv0OEBH6ZQCkkllCtHg2f1EdVc5JSthWktVeXbl2Uvkq57xsb65tez53TJcwRvxJfWL+wVT+VVj+lWUzS4imUmCcjTMpddYoU8v/PVtH4bJnf0p6COMjLlS+ypzEvuTalsIjpkwp33P9pPJV5rVcu2JYNszbdV4rpZmGvMQ1FaLLFKOPxrmU+kqWKaEbi9xKxmCuK4TjkZZKxHK2Zf0/17Z1fbX2Q+x026b87q7YbZ+dR1pIdaTawxU1jE11snQ5zb6VZtW7PorVl6kz+W42m9PM/9pCSJyssLTav636HaL90DzaGWr3LzTOWvNRfDFfTsHVpHVNvrToe6Py4v5LfB7nMhrV/1y/RyrPsbZ8baNFoyX6rBYWNfrfqGxK6IJ5jup/DS3E1qmBHXQUG/X8/CV0Q3X4Hp7gGxqekYUP6fjPKZaWsC2l3XWZXDuofJFz3bVdvJ9rm6/OkdI0+6/Zt1iNcR+yfA0Ry6tWfquatOr3mY7QL88IlT9eQoscN7Is+/O3tXclbFvXWWM/104qX+Wcl33Nta0Gr5w6yZ/uczfbwD5M1yS8+Zb/WFm0aSo2btb9j+WVkj+X8dRHi89J7EuubSk8YsqU8j3XTypfZV7LtSuGZau8HLOe16TcPvlapb+0Yti7HY26PGNaQjcWuZ1xTTmey7FELPfszrVtr97S6aPYWdrvUvU9KFUR6gEBwQQ+kG38+sr1Mr+5go9jCSMAlmGckAsEQAAERiSAMX7EqMFmEAABawQwVluLOPwFARAAARAAARAAARAAgTwCuIbI44fSIFCDAPplDaqoEwT0EJAyRvxESN9PN6XpoQtPQAAEQAAEWhOQMq+19hvtgQAIgAAIDE6g2psrzrjQk4lfUx6+IONlvvH9ew0XZ5p9uwvXcH/fkcWvPVbz06mfNGjO41utJPMsrfZvq36X7EiWGFrytaRGBNRlfowPiYFGfWv0KSSWsXmsc7Luf6xeKubHWL0DFxpdwIDFwmK9BTZ3RMBhrYzzfTDzMwKXy6+5iv2MW0p8pNjhU7Fk23z2tkrTzkW7fx6d4BrCA0VSkkFN8q+hi50/G2kD/bIR6LkZyZqTbNvMj/9LtlOybS7DiO3uY8TE9BHZ/Irtpv3XdE/Fywgf1GZVqLfkWIFFMjqMqenoipWUql+pdmWC7z6vZdqP4gcElGr2wOMyh8AtnKNkVpJtCydcJqdWFt0erqCw8AXY9VVZBPgNpX2k9dsyIetai2bfuoJNaZx09pb09ZLWZ7T9nuuYOvQ/afMfKXVaLQOWl8hb7d9W/S7Z3S0xtORrSY10rQtjfDB+jfrW6FNwQCMyWudk3f8IqdTLirH6kC00uuABi4XFegts7oiAw1oZ5/tg5mcELrI/45YSHyl2+FQs2Tafva3StHPR7t+NTnANcYND6o4pTU5BsOjzVX/ol1cULTcka06ybW6MJNsp2TaXYdC2kDHiOzaWbHlP91XwD6X+EWS8jUyq9JYZMrBIByiZnWTb0olvS0r1U6pdW4KBKULmtUBrkS2BgDrNJjBIKQJu4dQks5JsWzjhMjlVsnhQhk1SLS/oQuyJU5LfLPCQ0vgJ+NEXzb4lx4Zi+47WX6mC+Y0lH6e0H5MrDS/Ib6n4O7X3I6+0/Qut/6CTuE/hVcjJOXEDyz4hsdq/rfpdUmWWGFryNVojncfwM3tVzZdnziYe16hvjT4lhvewmHVO5vwXPF5jrPZ3VXMa9WO4pILFPhywuWMDDvsa2TsCZn4y4HLvnmQGUmyTYodPxZJt89nbKk07F+3++XTS7RpC8HWVj1OvNIuatOjzWl/ol2sidfcla06ybW5UJNsp2TaXYcx2tzGCjaR7KD7Qvw80j/N9FU/4xlhOx3IhoFFvqaEFi1Ry+CwhnVy5klL1K9WuXPJd57Uc43FNe0pPq2ZPHc/MAG7hACWzkmxbOOEyOVWy6PnmCn5rxe9lYiOuFs2+JcOmi+7nyYUzC1LbX6gKNa+qBMtMQeQVt9q/rfqdp5bb0pYYWvL1NsoBez3H8DPztM2XZ/4mHteob40+JYb3sJh1Tub8lzpeY6ze7afmNLpL4t49sNiHAzZ3bMBhXyN7R8DMTwZcZI+5UuIjxQ6fiiXb5rO3VZp2Ltr92+ik5zWE1OuqDaS+CeY0Sbgt+nyjMvTLGxwtdiRrTrJtbmwk2ynZNpdh8HbPMWI2kmx4Om/j/w0BdXq78S5uByzieLm5JbOTbJvLMHdbqp9S7criLWFeS3WAbO92r2OqzY3LqdRsA4bgFg5ZMivJtoUTLpNTJYtuD1fQ5LN+up0Bf6b0Id8k4GpMs2+un9gGAYsErPZvq36X1LglhpZ8LakR1DUGAY361uhTDTVZ52Td/xqaQp1lCUCjC0+wWFist8Dmjgg4rJVxvg9mfkbgcvlF11qfcfMPxfCavEiJjxQ7fCAl2+azt1Wadi7a/WulE7RTjoBFTVr0uZxiUFMKAcmak2yby7qSndnnvGxjJdtc97ENAlcC0NsVBfregiJ6S7KOJNsWDfqgQCU/s+e1SnYdkMAhEMgjAM2m8QO3cG6SWUm2LZxwmZxaWXR7uMINC71C6RHtP6OVXwOlatHsm6pAwRkQSCBgtX9b9TtBIrtFLDG05OtuwHFALQGN+tboUw0BWudk3f8amkKdZQlAowtPsFhYrLfA5o4IOKyVcb4PZn5G4HLvXkkG9GXEBz/ptNSStqVZcFdKih0+HyTb5rO3VZp2Ltr9a6UTtFOOgEVNWvS5nGJQUwoByZqTbJvLupSdpc952cZStrn+YhsE9ghAbwsZsFhYxG5JZifZtljOR/lL+Vl6Xitl15HvOAYCJQlAs2k0wS2cm2RWkm0LJ1wmpyYWD8ogSa+FYD6k0q9pfUwnGlm/xpVuRZ2Smn2rQwy1gsA4BKz2b6t+l1SmJYaWfC2pEdQ1BgGN+tboUw01Wedk3f8amkKdZQlAowtPsFhYrLfA5o4IOKyVcb4PZn5G4HK5iUvsZ9xS4iPFDp+KJdvms7dVmnYu2v1rpRO0U46ARU1a9LmcYlBTCgHJmpNsm8tasp2SbXMZYlsHAehtiSNYLCxitySzk2xbLOej/FL9lGrXEUscs00Amk2LP7iFc5PMSrJt4YTL5NTGouubK2aY9GL2TtIAACAASURBVFDFUw4P7fMbLL7Q/ucy4epXi2bf+lFFyyAgg4DV/m3V75Kqs8TQkq8lNYK6xiCgUd8afaqhJuucrPtfQ1OosywBaHThCRYLi/UW2NwRAYe1Ms73wczPCFyWByskfsYtJT5S7PCpWLJtPntbpWnnot2/VjpBO+UIWNSkRZ/LKQY1pRCQrDnJtrmsJdsp2TaXIbZ1EIDeljiCxcIidksyO8m2xXI+yi/VT6l2HbHEMdsEoNm0+INbODfJrCTbFk64TE6NLLq9uWKC+YZC84q2H/FK2z/Q+meZcPWrRbNv/aiiZRCQQcBq/7bqd0nVWWJoydeSGkFdYxDQqG+NPtVQk3VO1v2voSnUWZYANLrwBIuFxXoLbO6IgMNaGef7YOZnBC7XBytEfsYtJT5S7PCpWLJtPntbpWnnot2/VjpBO+UIWNSkRZ/LKQY1pRCQrDnJtrmsJdsp2TaXIbZ1EIDeljiCxcIidksyO8m2xXI+yi/VT6l2HbHEMdsEoNm0+INbODfJrCTbFk64TE6tLHq+ueIjheZrWvn/daFf+OIHLEZfNPs2emxgPwjkErDav636nasXt7wlhpZ8dWOMbRsENOpbo0811Gidk3X/a2gKdZYlAI0uPMFiYbHeAps7IuCwVsb5Ppj5GYHL3WfbUj/jlhIfKXb4VCzZNp+9rdK0c9HuXyudoJ1yBCxq0qLP5RSDmlIISNZcsG10wwqfd35D91N8ToGQWSbYzsx2UopLti3FH5SRTQB6W+IDFguL2C3J7IJt6zwvxTJf5w/2c12w8r5Uuyq7jeoHJgDNpgUP3MK5SWYl2bZwwmVyqmTR7c0VdNH/N1rvr9cysepbi2bf+pJF6yDQn4DV/m3V75KKs8TQkq8lNYK6xiCgUd8afaqhJuucrPtfQ1OosywBaHThCRYLi/UW2NwRAYe1Ms73wczPCFzu3WMGRIdX/sGgT7R/+bzbT6xtqhsfavlnWl+yfW2tAKPWvEu052pn1nQP7ZTwxVeHdv98PiNNNgGLmrTos2wV6rcuRHN8gyitL2jlm0KaLSG2Ocb8RNvPnP1mm2wnNYbz3mbE0ZBUApF9VqobRewCi3SMIewwL6XzDSkpdV5ba4N8uXyeE+IT8oBADwJrzdK+mM9Ge/AIbRPcQkndfbY868r9H15DvZyjxXE6t3joI0LHntHqPebLv06ryWJtN+3/uG6/1n7PN1dsfCLH/9okrhK4k6ySVOyS7+/IkdMPQ7T6ryKIcMIUAfRZf7jBxc9lL9U6L+v+7+kC6WMQ0K5f7f6VUpl2TuSf2euzUhpBPX0IWNGu9jGolXq0c7TSH6CXVgTO27GmOfL3EVF5MpHhXxIWudBnyi97GQZGvci3b3fk/k+24/uZ9pJBi5EEtOp05LEjMoTILpgA6RDndCfxAaMTQDgMAh4CmOO2UIgJzru3WDYpGHM3SIongHFxpKgQBE4JYF7cIsK8uGWClKoE+GH9/9LKD+5dF9LhC9r5TN8hZL0hkerh70f+SesPVNfjawP5Gzd2U90/U1tv6D//4FXVpdubK9ZeTUFisJu3Wbhp63Ia9ifff3X93Nsu6e8k6JJVmq0LLMuGXjrPXn22LOXytUnjAh2Vj3HJGqGXkjR11SW97zJtafotrQAJ/kEHpaMaX9+kA3HXZyNoI572OCVG4C9Vu6WjPPnZ/HOEGD8G0otojjHM13lH6w/SNTNCv1troPW+BM211hF9hstvq+AvI7K+eGgdq5btgdHlGlLsgzeltCCh/6f60mt8bz1epfIZoZwFlr10Wjv+k19iPnuwoKXaMZ3rH40lzlfmyO3/ByMb53T7Cih7ZLQxIsV7aXNcig+ly0xMmn8ON6LeMOaWVt+2PjDGvLZVRb+UEcepWFqYF7fEes2LW0vuUizocM/3FunMl9bkN0OUsJHmPn6z9frBCv7c+imlf8hpg3zjHyzghzS4vqDPwqnMm5A2fXZTuXdU/nVI+Zw8Yh6uICeeE4i3Oc4MXLa57yQuFvH/0f+mrzYdOEa7poPlLpqkA4PwjO6z7BetXSfJpIDEFRLDRauO4sIhPjf0Ij5E7Q0cpO8yGDH6rRSlaP9K2qFZByU5Nairqw58/g2kDZ/5w6cNxD9Ku+wXrSOep0f5yQJs6atWvQzYkUXrxOU5iGaG4emybbwdzaikfYPoqKTLp3URkye0/kgr/zooFg+B2oyofiufw3ft/57QxiQ1t92QLmLikJTXEMtonTIbWqVf64jxy5CWkvpaTCGwjKEVlpeY4pzuBFVtRtD1SQAiDhtiKWaOiwhP7azRTHINMqS3XFRR5WuPuVHGKM1cmzH6hhzhGIpF1BzAXGiVfj2bK6QoJtxYLS6j63Di8oL+S74Pmt++8CxXNBXK8wMKQQ85HLVN9/2n/AhVch+fHgbh6+SgBzmObD869tXRwVbHyMkfqa1LkCaHWUy8zAC/JyBf7pJ0/XV9Z89a+c88qS3+RTWejL5uxZfamp8Y4lfMfEvra2q76S+7kQ2st2+p3SKvhrHKkjjyE2f8xezjkvrpxZP8CFom/VwnFdrnQTpkzOI8m1crBTU6QCZpXBTraAA1nJsIvVzm++7z4Xmk9nNQDE3OAUxEmn73o5R2JMO/tAY9paSP4WyyBE4edMWSXP9oO/Rcp1j7exX10Ab5P/p4Xezapwf/PS3spSdqd7jzdNdPZhHRT5v5OppeIjnuSVBUuquTCI2wD8104gKTrhmXJ9sdwbQLT5dtq22XUQSfouZJ11FRZ8Mre0pZX9H6muPCjMKLmslZlZEFXUro/6lqdW3nOlqNX710Qf5V+TznjD+1W+26qhfLM59LHs/QqejzENcv2o757KGKXz21NLEo9r1liP6oTfTLEFBy8lQ9X5HjZpYlVRn1GiOor2LuzpJFn8LTuP6GW6ft7nNcHwq3rbpMErjcVhax16vvRpg4ataqY+6oUArbXZVxr77Ra147iw3ZVe3c+KztXrE4s6vkcXcOoO3QebHKdV9Jv3LqcplwPb25jKxDYsfny0+meLC+RC7E+GUvw4gR82FOfyc7nq/seEJpRe6hXtWbvXtiN9fPb9tg397zTo1FxMMV5Bi/WoRPDHjhm+2vASNIfNHBTxXxjfgaF9d39q+Z/8T5W+Lb7Ikoaovj+IravQia9nlA+0j/mUHLByxYX0U7lRWWU8x+IX5/0vodrfMDULRZbmnNM9LypD5LPnWbJCP9S80ujotGHaUGR2A503oRNB9GSQNzwBWXOP1eLSuzkeRfmaaXWoSP4WyoCE4LseJbrn/Nrk9CvGipjVHH6xXHotc+Lfmv/AjdjdYu+TTiebrrJ7MJ6qetfR1ML8EcQ8UoIJ+rkyCNsM2tdeJyEq4ZlyebHcS0J0+XbaNtl1EQnxp2CddRDZd366RzGf7c7hWt/AXDZ2LzZTez0QOtGBnQpYj+nyhj13auotn41UoXrT7P2ePf4rqqFcs9HxukJ+mUuEi/1nH9Cu57Nf3qqKWi1+5nmkS/PCMk63ir8xVZXsdZ04pRqzGC/OF7KKp/H79HGWPEHpmodHFzXJT1dTK7TLiF4Lk/15xWfTfXzlHKtxpzR+FRw85WjFv1jd7z2lmMWsx7Zza0isWZHRWPu3NA0PhPTKRfz+bicplwXd25jKpDsvsT8ftEfbnZPdC5we9Q3vvA3jTfSP7OwGu3w+832uY8Re8Dd+q/98Dd6bFNQbq+tWJqn1/Rwl/4zAs/HfiQ0vjpGVWLx3f2r7X//ERS9U5Cvr4g3/jX0a5intrl/ctT++x8i4Xa5V9/qTEJq2fJMaOVX0vFH/T+u3K8mvCM8UFIn40xuUle4VygoyYqCG/Eul4kzYfhUbvLaX0OYArC9Rsb0k1+gf6JG8ON6qD19clGm56E6toYebx2edHYXePapzp/14fQbc8YJlG7oe7s5vP4yXkl+zqKXqRz3NWE74BHJ5I1snZBnGY8PFXpZR2AlH0Po96aE6ejFK65Zeg8YH6ggj/Ha/r5a67tZ+VJc/zKb/68OWtpzEilLgX2/2BNeGznsq3Hr+q6aPx5zg3/qZ+2+l6oOssb5xrtCNFpcW89frXue0c+NddSpWt3r4/ol14s1RKJd/Y5S+PzlWosfBWX4MP1NmZUfYzA3O1Tyzhpwue4LiA9TNiO1nN/9b7bBW5Eo4OOuREe9s86KOPqfaPnvHamCoqZmHsZydbqsTjjUeO4Zw5oPf7XcCurTg8Trk8KF5U6zApYZuFpbviR/r/LrCqpOLV79ANMfIx/YF3ccmL3bC/f884+VFu6vrmCIPBT9+snsfjLnt+reSyk4h3f2bpm/k82/LcREn6lDD8ptl74CSIeQIZ+LT1YrsOat9+YZ5Cxk03r8YrLHvZZKscPi+29WimobcmZJHPRpCPJGoixDXq50FI9H8boYS+vxL7LtkrW7x7LmPRU/2LaiMmrTQcxvvfMu6ODw3Od1vY21AbGa09wG/L3tL6flKJdKjPcefqOnwzmsJ/28nWyt9VnDvsCWR1J5biqRuzujn+HGmFneunEBSlRMzs82exDphJ4umxrbu8wOuTTwB5xY09Nn4/qnuLDc95z2n5EX2j7Pp89qkLqMf5egdfspQWjqQ11upz8Wn9e2q3/x4hhx3auopn9WnWxikOT6yqtLFN1SuVEX+vs+HXa91r4NdmmbrxGv1wRaLtb5Jxl0ibO6Q5i14IRxohy93RoZTn5FX1+TOVEz90HXe/00A4TLnc6959WHphBq94C3XezFZmTuMKJqcZ5yeWVsj0UY/SNS4ibXLOeiUlrLCa/ouZFKqN2TmQd7DDhQ4fzYgsuk23ar4eZdevl7O0LVe3hB9G5AYova2z9A0w8b33h4+5Cefk+V34hwtnyw1z/WUaqk9tePwjxHaX/uir7jup8O9e7Y/dcpPqDIQ/mlmr9Jwf5rRN7vyL1E7V7E4gJjhs0Diz/ytZwX/zE+s4xaOz/P6m9n7ndBgtPfj5Bz7Hm4yMvYFk2ei15Xi2v1Gd5knxL6zOqnyel4ZaBuWjS0TC6gV5OQ6V9PjwFEJChS99luwbWbwDWav4FtZ2QSZsOEhDUKRKr88bXJyFOt9IGxmt/NFrx37ReQbsiz9Nj/WRQAf20l6/D6CWQ40aXvRJidRKgEXall05cjF00E8uTDQ5gKoGnyzZrO5ZRAJ8se04Kd9HRiU09D/M5zSeKCX8G+6+ehghuuwWjYXU5WP+/kVms7Vy48fg1rC5uQB/vtLquGpZlJZ12Pw+J9Suw77Xwa1gtHXfFm6Polzc4htlpcb4yDIwdQ1swwhhx7x5zLrEMy3LgOa5E3Lx1xDLhSgLnfm97CYnD6i3B11ZFWoy5rXyR2k4Lxugbd/OahHsZh41F7BwQMP63uO6r2u9jmbAxQrgMq8OqAc2onLVAxV/RymP6/JbpjBrTipIdfL8q2/CWtvnBiXnhBy8297KSHvn7hMuDUSf/Lw9uzJUd/ad6+EGMmzop/+/rNNrne2wvy4HdcxbmG2zDXCjmf9WHK8hBDsrlqZfJ2att0z7/WtaHa+Jqg/JwMJ/R+nh1SPxuru/sYG3/XTHWBDrF+qyJb84y5BxnG2jlN2S84f85dfnKWmLp8790Wiuert2ki6zxiuuiOm7GLNoXMUm6fsZuj8xFi45iY9YzP/RyTJ/4bE5KPSWqzoee9sQl9ei7DGFk/YYEsYZ/Ie2m5tGkg1QGNcrl6oDK35zr1LDxrM4W2iA/hx6v2X5aq1z7tODv0wD5k3WuTuVvtEv7Is/Tc/1kdpJ8HVUvPo4+XfZKy9XJWiOTvyL6RA/N5PL06YXqFMGzlEZzGfk0V8o2Xz2tdcTxppV/PIh/RIi3q3z26PM1MI0/e/9MdvHnoetfpgqsIi8bGN19QZpHsU9pil3Rc7CWXuTazrZSHTfnkKXtbz1elbb/rD7i1+y6alSWNXRKdXY/D8n1i8pv+l4rv1pqiXyqdu2+1z+5zb1jTvo3znbyZkuWyUY6BVljtOKczmGy3gSjcc/p1rHc28cYsUdmSSdGxc+PuW9RC91vulu8jNvKZcKtUR2buT/OiuPco81JExPMS8dhzT7KfY9W03P/iH0jO/BOBRT/ZufGTrPezVFjQQyLzovcLwnQsHMiBzeXyVTHzbzYisuoOmRmpReOI617LxMIbo6Yzg9UXO6fDy5YPiP31c0PMJF9/LID7ndSF6/djrFs+x/OfvHNr4rX6FRIAeAvbz5MAwd/wfTSOcwnKe6+c+gy2LDznOcx1fPl5uAAOzm+s3vTwDis/6sQzR/E+eI4PwEactKyqjZq9yeKyctJi++oZKs3dkQZGZBZAssAM8fLUqPPUp1Hr1YaAhK4xIWpBq84C/rmruG/hn7kRAVjuAND2qZ2/dbwT1oMS9ijnVOOf8quT87kMvp4reXa5xqn0tql+kSep+f4ybB8/VSqr9fgVtiowbGCmclV5vjn0wgbYlEncwByeHIdPqbaeOYw8vGZ2Wv5P8V79zPu3n6Sffx57POedoBRT/p5bY/c/3NsZ2oWxq88dQSVHv26KsjJnEw1dDqNuazhbl/c5/i11/ck+JUT652yPa7d0S93gjFpDOd0O3w4GYwO4Og5hDHiJJaY47aAcphwbXtz/7YlWykYc+vHG4zrMx6gBcx7mUHKmQN84//UL7tez2Yi4XPm5HuluW2tXHK5dijP9zEXuZeZYsr18EMCz2mbX0TADzS0XliX/6L2fT/AxD/M9HDuf6mGcR1Ulj+LYl8vP0JF//+genPu0T6ym6q/x2+64TarLQ+q1Xxb8Sva5V/OvIhu+s9B8Yplgv2ajvOrQL7Q/qMp7bbWMfaifGeXlPkfGqX/Cc0Ym2/i+dtUjr9MrPo6mFj7KuSvxrKCrRKrLNpnSX/zJLl+tZJE349sApcjOttjRXltqxefUtR/Rf0oJHAYw0Mo1c2jXb9F/asbiq61a+cU5Z/R65MzAYocrw1c+xTTrvDziyg/WaxH/VS4r2d9Led4UY45hlQqG+XfkUbYPsM6mcMTxXNidvlhGN/nl0p5RjE609wMHv9BAASGIDBy/4+ynaOB8aupJkVeVzUlcNdYUZ0KOg+J8uus7wnyK1sik69Sv7dEv8yOMCoAAdUEMEbchRdz3FbmUUy4+Nncv20CKSAAAiDQnADmvTDkUXPA0fiv6LovigljNsIlTFG6cp29faG6t3z/Pa3Paf2Z1vV90/zj/z/kGsH10vqSVn6Rwn1af6A158EKflhp1+5prJh/BCDX/N3yTR6uIEffkwUcGH57BS+7b62YBgp+Rfkr2uaHKh7RNgdwfsMBbY6zxPjOXmnzf4rUUezmJ0H/WzGqf05x4Cb4lT3/rthW7ap7s6ztX/f6K/TZ7pNkCajgEkexAq84AzrnruC/in5EYek6htM5Br9q/iOtf0SsfB5matGu3wr+qdSHdk4x/tF4wTeOqrk+CxTsyOO1pmufTbgKa1fs+UWMnwwpoJ+K9XUT5IIJFTgWtC6/qhj/AjTCBpnUyRyJGJ5cJoCpOp4xjAL4zOiH/k9+/nW2njlI5atcp53ZxcfPbCtxPNcOKv+G1s01LNn2C60/+Y5RGr+1+HShfNnxO21ESYaR+3+M7Rwu0oXF659aSu16XVXLqRr1VtCpiPOQGL8C+54IvwppoNe1u7p+SdrJPpcqcU5AdVQ5ZylhWwnN5tpRiw/7lmtbCT6K6lA3RtSKDea4LdkYJlya+q66827yKXtOmthkXatqHnO1Myb/smK/7ZlIOSGAee8EUOjhmDmAdH42/qu47othwpytcAnVVEw+Zkcr34vO96Vf3phA+/yGBikLv32B3w7he2tEdxtJq2wfn8Nw32y9rB/0iGmf4139jd1fxViUmZdfpfkLBYJvbP+GAvNpp76PlM6/9M7/rwvlz35C5lpZ+41Q39kydf5T7L5Q3Nm3y5tLeMNZ5rSczuJUt93k9jmVbHg2HX27zTVGSm+WY1AqYmXJPnv2iqIiBjeqBFziQJfkFdeyjNwl/VfRj3qP4dN8+FiGPMRboV2/Jf0TH8wMA7VzCvVP3fXJmSZGHq+nsV7Ftc9BnEppV/r5RaifjOqsn0r39SDc2YdKcsw2pkIFof6daYRNs6yTOTShPDn/GVOtPEMZnfGZmQ/9n+bdyweeOU7Uuk4rYVuOX3PZXDuovPc7gelzXn4zdvKvX+XaNvto6P/I/T/Udg6nifGrhW6pj3X9XqiFj4XbKKlTSechoX6F9D1JfmWFn/sHV9D6e0uN/XJimfWZN9VR4pyuyjlLCduyxDoVzrWDylfhw+bl2laCj5Y6iCXm7rhgYo7b8gplwiVD5v5tC4JTuA+ReVlzEruXO65RebVjrnbGubEX3D1EmsZ66nkvo0goeUaFzgFn47+a6z7CGcqEyVvikqe0VWnqy3zPMbMWuUxzV/WHAHKcJxt/oPHwNa2vJntzqgsuy+0GZ3Yykp384/q/trC12cMV5Mx7DgI59h9ad08oKd/fHBYqNkN9Z2c1+j8FkSc/3xNO85sr+HjthZ9Yek+MLx9a1m6sYv0SWFZ0r3/VJfvspDfRk2QocXAJJXWXrySvuJZl5C7pv6Z+RNHBGC5DoodWaNdvSf8OQQ5+UDunUP8on7rrs0Bpjj5ea7n22YSrlHapHr4uFHueHuonAzrrp9J93QS5YEJJjgXNKlZVqH9nGmGDLOtkDkgoz4nX4fyolWcoI8p3yGdmjv8gAALjEBi5/4faztHA+FVck6NfVxUHsldhSZ1SXWKudUL9Cul7kvzai2NCeo9rd/TLhEChCAgYIoAxIjDYmOO2oEKZcMmQuX/bAlJAAARAoDgBzHuFkIbOAWfjPx0Xcz2biyaUCbdjiUsuV5SvQ4A0+JLu7f+6Tu3Fa/3faawoXvG6wmYPV0wN81NCT8m5am8pWDsoaN+y7xwGfh07P1yzXvhBm0+1BT91/kfU1is2gB/04UGBtwdcurIckFeqydb77B43cNkj40+3zsu6/z5VYAz3UZGZpl2/2v0rpSrtnLT7l6ODYcdrZdc+ezG0ol0rfu7FuVS6do7a/Sulg9B6wPOcFBg5jKZ5l2+M5GX+YZnva3/Wedfc8V8ptkmxw0dLsm0+ewWkjdz/R7ZdQOiTTRj2uirZ47yCWnWq1a+saE9zUI/vLdEvPZGTfE4gxTYpdnjCx9/7801AIs/JffYKT8MYERcgzHFbXmCyZRKdInlck2xbDGipfki1K4btYHkx75UNGOaALU8w2TKZz9/5B/pjbuZ/Tp+5f3KrozHzL3fft01ldt9USOXfUJknnnKXH4un4743K/B9zqc/3pdrm8empKQQO9yKKb+7K3bbZ+dRrFMdqfZwxVFg6Bi/miNpqQHBNYRs406b1XlH9d3lUHqb4vaWuPATTs9o+z3XP7H+J23+o3R7nvq+4zRum9rlLzr/8OQZIkkAyyE4xRhJmtidbOlY8ni1ZwPFsOpMNPWtrHGMbdfGZS8epdJr8aqtlynWYue+vfi04LLXdk46xvAcevXK1uq/exa31m8t/1r7scezVLp2Ttr9K6WDuZ7Bx2s11z4cj1ranWO9/t9rbLPi55p36f1aHHvpYs2nln/rduZ9KX7P9pT+r5kn+ZZ9jce8azFSpi3+AZfrlyzEjL+Q4de4f8sMOy9SbJNihy8ckm3z2Xuahv6PsetUJA0z0PjY+3uhKt6W6Ge15tg9h1vNvVr92uOamd7l2l1rv8yMBReXfE4gxTYpdvjCLdk2n71i0zSOESXmbQ6YtjmuBJdaTFqdt4jtiHeGSR7XJNsWE1apfki1K4btMHk1zntn8EuM/9xGrTlgz/7ac0MJLtqY7MWiRDrF8wvVwz/InrXk6oLKXz/Xdw2hWD6j/Yd0/Gc3PWY717aYto7ySrHjyEbJx6o9XDFqYMju7M47qu8NhMqD4k80AM2/4vZ32v8H8bp5qqyGHdTGB2qX1x+p/i+0/7ZGOw3r7MaSGPKTu/wl/eWDX/r/kdI4hr8R1+RJhcp3W8juqg87tHaM/Mkex9hmbVxqx2FkXiU0M7L/tbXhqb/bGO6xJSpJ4xzAALTrV7t/USI+yKydk3b/DkKbc2jI8Zpirerax4p2rfiZ0yFDymrnqN2/kBiXzKOZJ/mGzwVKiuW4rhd8nUTMP0zZ+M29nPaI0qp/5nls2sUOCbaB0UmgSh5G/9d/jZ+il86f5wx5XXXEuUQ/ozpUfScx89Lq1+xfyf/Eque1u7p+WSA2OF85hwhG54yK5cDcXQwlf/+D62MPzhJcMO97wJZLwphbjuVeTVIZS7Vrj2NQeud57cxGU+fGJcZ/BqptDijBRRuTs46D4yBggUC1hysswIOPcQSmiYhfd9Rlofafdmm4QqM9WVLbp682quAyqgQBEAABNQR6juG5EDEH5BJEeRAAgZEIDD5eq7n2GUkzsBUEQAAEQMAkAf51q9+Fei7FNil2+MIk2TafvUgDgSQCPT/PGfm6Kgk2CoFABAHqH12u3dEvvUGSfE4gxTYpdvgCKNk2n72naZi7TxEhAwhoJyB5XJNsW4wupPoh1a4Ytpu8Pee1jTGrBJwbr4BgFwQGI0APb/EPhP80mT3/4Pv3U9/u6o1k20qD0eprt4crtAINEZ5l30P4IA8ISCaA/uuPDrj4ubipYLTQAIuFBbbGI6BRvxp9qqEs7Zy0+1dDE6hTFgFLGrbka2mVWWFnxc/S+jiqD0z9dMDl8itt67fj8pfgn+nLm95vreBfkBNhWyU7+Ndnec1aKtmWZdMIhUfv+6PbP4JGYGNZAho1q9GnslFHba0JVDwnyD5nqWhbFOZKdmTzYScq2RbFB5lBYCaAOW4mce8eWCwsYrcqjWsYc51ASGVcyS7Hc2yCQFsCmAv8vMHFzyUx9TWNnfyZ/GUhtm9o4yOt396ldP0r2bbSYFT62u3hCoqO7cbLngAACjFJREFUSqCBqrPseyAiZAMBsQTQf/2hARc/FzcVjBYaYLGwwNZ4BDTqV6NPNZSlnZN2/2poAnXKImBJw5Z8La0yK+ys+FlaH0f1gamfDrg4XOiLm0e0+4zWx06yiE0ptpWyg74w+1AabCnbStsltL7R+/7o9guVBcyqSECjZjX6VFECqLolgZLnBKXPWUralsO0lB2l+bBPpWzL4YOy5glgjlskABYLi+StUuMaxtz9EEhlXMqufc9xBASaEMBc4McMLn4uKakvaLx858xzr6kSTntEab1/AEmybSmsj8qo9PXBkceVjzHQJ04bLOyH08mBk6xy07LvKgMKp0wRQP/1hxtc/FzcVDBaaIDFwgJb4xHQqF+NPtVQlnZO2v2roQnUKYuAJQ1b8rW0yqyws+JnaX0c1QemfjrgMnGhz7T5leP8+fZj+tIm+40KftxpqVJsk2KHj6Jk23z2Ckgbve+Pbr8ACcCExgQ0alajT41lgeZqEJB8TiDFNil2+OIv2TafvUhTSwBz3BJasFhYJG1JHtck2xYDW6ofUu2KYYu8IDARwFzglwK4+LmkpPJbK35PKdigjGTbSruv0teeb65QCTRQdZZ9D0SEbCAglgD6rz804OLn4qaC0UIDLBYW2BqPgEb9avSphrK0c9LuXw1NoE5ZBCxp2JKvpVVmhZ0VP0vr46g+MPXTARfiMn/hTQ9VPGVMtM9vsPhC+595v+cixTYpdvhiIdk2n71C0kbv+6PbL0QGMKMhAY2a1ehTQ0mgqRoEJJ8TSLFNih2++Eu2zWcv0lQTwBy3hBcsFhbRW5LHNcm2xYCW6odUu2LYIi8IOAQwFzgwnE1wcWDkbNJn8G9X5ZntZ0rPeWsF/3hS9g8oVbJt5a6MXa2+dnu4QivQELkq953fPvK1y4H8zR5s3PpqbK9tpjZufKjRZkCdYBkAqXUW5f03GSe4nKMDo4WRERZDjuFLlNK3hM6p6Q6tSmrUr0afVmErsqudk3b/DkRgZrzG+HyggsEOGe6v2ZGyws6Kn9mCiKgATP2wjHA5PFeg+ZXfWPGG1pe0zQ9V8MJf4Ly8bHX8I8U2KXb4QhFiG+VZf0683vdVrTpt9L4/uv0H4jocrw7KdT+EfnYcAo2a1ejTThSH7JdC+2RVliHnBDsxrp4sxTYpdviAh9hGedbncOt9X9W106rqupbxQlnWcje6XkNz3CkbxSyq992Qce00AJUySLYtxmWpfoTaRfnW89h6PwZHqbzV+0YpQ0vWIzQWJV3MqkvxXAAuWQTqFKb+yJ/PP6P1cU4LpNsPOeV9ZUvZ5qtbWpomX7s9XOEGVRNQ16+QbYW+85eJvM4LPx3GXyhKX96RgU9WRhYfKFf1n+2C5RmhzscV9t8iRMHlHCMYLYwUsxh1DF+Ck74lcU5N9+agpEb9avTpIITJh7Rz0u7fKvCWxmuMz6vga9g11l+LhswKOyt+FhXHSWVg6gekmMvZucJHIsJfYPP/60JfwEj4PFSKbVLsuMbH2Qixzcw5lMMleHP0vj+6/atAnY1Xq+yidtHPAsOhTLMXrzX65IRz1H4psU/WZhlyTuCEtummFNuk2OGDH2KbRV37WJVIk8iyhF/F61A+x0XxUsai9pzEbEPGtagYFMws2bYYN6X6EWqXxLG4Rd+IiXGrvBJj0cr3qHaUzQVRvh9lBpcjOuHHiCP/CNJrWh/TZ/NfwkvWzynZttLea/O1+8MV2oDGCE6b7zQwfRvjv6S8ZPtTYfaApaSAeGzR1n89LiYlgcs5NjBaGGllMfJ8uEQnfUvanJruyXFJjfrV6NNxFNOOauek3T836tbGa4zPbvR1bFvqr6UjZoWdFT9L6+OoPjD109HKJeRcgfL8zU+lf6oU26TY4YtIiG2UR9Tnxj4/eqWN3vdHt9+NO+l02O8T2A/0Mzea+9uaNDt7qdGn2beR+6W0PtmCJbWBc7pZvDv/R2dkUdc7ocxOlsYy26FKFWie42KRaWJB+m9y3j36mBurkR75pTIOtYvyifqsguxp0jd6aOWsTWmxOLO313FNc0FJhuBShubMce6PtM9vsPhC+5/LtJBei2Tb0r3yl9To6wO/q21SXaAk5i8s7CmtjQEdW7Hse0fsaBoEihBA//VjBBc/FzcVjBYaYLGwwNZ4BDTqV6NPNZSlnZN2/2poAnXKImBJw5Z8La0yK+ys+FlaH0f1gamfDrj4uSAVBLQTGL3vj26/dn3Bvy0BjZrV6NM2ckgBARAAARCwSABz3BJ1sFhYYAsEQAAErBLAXOCPPLj4ucSmThz5zTmvaJvvPecHK/it0n/G1lU6v2Tb4GsYgW4PV1gSzzoUln1fs8A+CIxGAP3XHzFw8XNxU8FooQEWCwtsjUdAo341+lRDWdo5afevhiZQpywCljRsydfSKrPCzoqfpfVxVB+Y+umAi58LUkFAO4HR+/7o9mvXF/zbEtCoWY0+bSOHFBAAARAAAYsEMMctUQeLhQW2QAAEQMAqAcwF/siDi59LYupHKveEVv4/ry/4h/4T6ytZTLJtJf3kulT6+lVpShH1MdCvJ7DXYiRsfnJI+2LZd+2xhX/6CaD/+mMMLn4ubioYLTTAYmGBrfEIaNSvRp9qKEs7J+3+1dAE6pRFwJKGLflaWmVW2Fnxs7Q+juoDUz8dcPFzQSoIaCcwet8f3X7t+oJ/WwIaNavRp23kkAICIAACIGCRAOa4JepgsbDAFgiAAAhYJYC5wB95cPFziU6le83/Fl2oUQHJtpVGoNXXbg9XaAUaIjzLvofwQR4QkEwA/dcfHXDxc3FTwWihARYLC2yNR0CjfjX6VENZ2jlp96+GJlCnLAKWNGzJ19Iqs8LOip+l9XFUH5j66YCLnwtSQUA7gdH7/uj2a9cX/NsS0KhZjT5tI4cUEAABEAABiwQwxy1RB4uFBbZAAARAwCoBzAX+yIOLnwtSQUAagQezQfS6mb9W6x/zMd//VV4ue5jfVwfS0gkQ74/rGFBt/CYQLCAAAh4C6/6CMcsDSUiS5PENOhIikpUZkjWzMhW7nQig77YFL7lPQgttteC2JlkXrp3Ybk8A/bI985AWpfZZ6CUkeu3zSNULk4Bm2ushtUXJOkr1CeVAoCYBjG816Z7XjTHrnNHoOdDHxoog+uRY8YK1IAACIFCDAObuGlT714k5vn8MYAEIgMCYBDAvjhm3VKulzpfQYWpEUS6HQGx/OMp/nwzhG/K/8xj0Jz0l9WmdTpVF5V+Xx34ZAhSHR1TTN57afqe4ffGkIwkETBLAmDVe2CWOb9CRbB1J1IxsYnasQ9/tE2uJfRJa6KMFt1WJunDtw3Z7AuiX7ZnHtCitz0IvMdFrn1eaXpgANNNeB7ktStRRrk8oDwI1CGB8q0E1vk6MWfHMRimBPjZKpG7tRJ+85YE9EAABELBEAHO37mhjjtcdX3gHAiBQngDmxfJMR6hR2nwJHY6gGr02xvaHo/z/D/541jCJHCaHAAAAAElFTkSuQmCC\n",
|
||
"text/latex": [
|
||
"$\\displaystyle \\left[ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2} & - \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}1 & 0\\\\0 & i\\end{matrix}\\right], \\ \\left[\\begin{matrix}1 & 0\\\\0 & 1\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2} & - \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2} & - \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}1 & 0\\\\0 & -1\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2} & \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & - \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}1 & 0\\\\0 & - i\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & - \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2} & \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & - \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & - \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2} & - \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2} & \\frac{1}{2} - \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2} & \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0 & 1\\\\1 & 0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2} & \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0 & 1\\\\i & 0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2} & \\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2} & \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0 & i\\\\1 & 0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & \\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2} i}{2} & - \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2} & - \\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2} & - \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0 & -1\\\\1 & 0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2} & - \\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2} & - \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2} & \\frac{i \\left(-1 + i\\right)}{2}\\\\- \\frac{1}{2} + \\frac{i}{2} & \\frac{i \\left(-1 + i\\right)}{2}\\end{matrix}\\right]\\right]$"
|
||
],
|
||
"text/plain": [
|
||
"⎡⎡√2 √2 ⎤ ⎡ √2 √2 ⎤ ⎡√2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅\n",
|
||
"⎢⎢── ── ⎥ ⎢ ── ── ⎥ ⎢── ──── ⎥ ⎢ ── ───\n",
|
||
"⎢⎢2 2 ⎥ ⎡1 0⎤ ⎡1 0⎤ ⎢ 2 2 ⎥ ⎢2 2 ⎥ ⎡1 0 ⎤ ⎢ 2 2 \n",
|
||
"⎢⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎢⎢√2 -√2 ⎥ ⎣0 ⅈ⎦ ⎣0 1⎦ ⎢√2⋅ⅈ -√2⋅ⅈ ⎥ ⎢√2 -√2⋅ⅈ ⎥ ⎣0 -1⎦ ⎢√2⋅ⅈ √2\n",
|
||
"⎢⎢── ────⎥ ⎢──── ──────⎥ ⎢── ──────⎥ ⎢──── ──\n",
|
||
"⎣⎣2 2 ⎦ ⎣ 2 2 ⎦ ⎣2 2 ⎦ ⎣ 2 2 \n",
|
||
"\n",
|
||
"ⅈ⎤ ⎡√2 -√2 ⎤ ⎡ √2 -√2 ⎤ ⎡√2 -√2⋅ⅈ ⎤ ⎡ √2 -√2⋅ⅈ ⎤ ⎡1 ⅈ 1\n",
|
||
"─⎥ ⎢── ────⎥ ⎢ ── ────⎥ ⎢── ──────⎥ ⎢ ── ──────⎥ ⎢─ + ─ ─\n",
|
||
" ⎥ ⎢2 2 ⎥ ⎡1 0 ⎤ ⎢ 2 2 ⎥ ⎢2 2 ⎥ ⎢ 2 2 ⎥ ⎢2 2 2\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢√2 √2 ⎥ ⎣0 -ⅈ⎦ ⎢√2⋅ⅈ √2⋅ⅈ⎥ ⎢√2 √2⋅ⅈ ⎥ ⎢√2⋅ⅈ -√2 ⎥ ⎢1 ⅈ 1\n",
|
||
" ⎥ ⎢── ── ⎥ ⎢──── ────⎥ ⎢── ──── ⎥ ⎢──── ──── ⎥ ⎢─ - ─ ─\n",
|
||
" ⎦ ⎣2 2 ⎦ ⎣ 2 2 ⎦ ⎣2 2 ⎦ ⎣ 2 2 ⎦ ⎣2 2 2\n",
|
||
"\n",
|
||
" ⅈ⎤ ⎡ √2 √2⎤ ⎡ √2 √2 ⎤ ⎡ 1 ⅈ 1 ⅈ⎤ ⎡\n",
|
||
" - ─⎥ ⎢ ── ──⎥ ⎢ ── ── ⎥ ⎢ ─ - ─ ─ + ─⎥ ⎢\n",
|
||
" 2⎥ ⎢ 2 2 ⎥ ⎡0 1⎤ ⎢ 2 2 ⎥ ⎡0 1⎤ ⎢ 2 2 2 2⎥ ⎡0 ⅈ⎤ ⎢\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢\n",
|
||
" ⅈ⎥ ⎢-√2 √2⎥ ⎣1 0⎦ ⎢-√2⋅ⅈ √2⋅ⅈ⎥ ⎣ⅈ 0⎦ ⎢ 1 ⅈ 1 ⅈ⎥ ⎣1 0⎦ ⎢\n",
|
||
" + ─⎥ ⎢──── ──⎥ ⎢────── ────⎥ ⎢- ─ + ─ ─ + ─⎥ ⎢\n",
|
||
" 2⎦ ⎣ 2 2 ⎦ ⎣ 2 2 ⎦ ⎣ 2 2 2 2⎦ ⎣\n",
|
||
"\n",
|
||
" √2 √2⋅ⅈ⎤ ⎡ 1 ⅈ 1 ⅈ⎤ ⎡ √2 -√2 ⎤ ⎡ 1 ⅈ ⅈ⋅(-1 \n",
|
||
" ── ────⎥ ⎢ ─ - ─ - ─ + ─⎥ ⎢ ── ──── ⎥ ⎢ ─ - ─ ──────\n",
|
||
" 2 2 ⎥ ⎢ 2 2 2 2⎥ ⎡0 -1⎤ ⎢ 2 2 ⎥ ⎢ 2 2 2 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"-√2⋅ⅈ -√2 ⎥ ⎢ 1 ⅈ 1 ⅈ⎥ ⎣1 0 ⎦ ⎢-√2⋅ⅈ -√2⋅ⅈ ⎥ ⎢ 1 ⅈ ⅈ⋅(-1 \n",
|
||
"────── ────⎥ ⎢- ─ + ─ - ─ + ─⎥ ⎢────── ──────⎥ ⎢- ─ + ─ ──────\n",
|
||
" 2 2 ⎦ ⎣ 2 2 2 2⎦ ⎣ 2 2 ⎦ ⎣ 2 2 2 \n",
|
||
"\n",
|
||
"+ ⅈ)⎤⎤\n",
|
||
"────⎥⎥\n",
|
||
" ⎥⎥\n",
|
||
" ⎥⎥\n",
|
||
"+ ⅈ)⎥⎥\n",
|
||
"────⎥⎥\n",
|
||
" ⎦⎦"
|
||
]
|
||
},
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"import sympy\n",
|
||
"\n",
|
||
"M = sympy.Matrix\n",
|
||
"simplify = sympy.simplify\n",
|
||
"sqrt = sympy.sqrt\n",
|
||
"i = sympy.I\n",
|
||
"_i = i\n",
|
||
"\n",
|
||
"from sympy.physics.quantum import Dagger\n",
|
||
"from sympy.physics.quantum import tensorproduct\n",
|
||
"\n",
|
||
"sympy.init_printing()\n",
|
||
"H = simplify(M([[1, 1], [1, -1]]) / sqrt(2))\n",
|
||
"S = M([[1, 0], [0, i]])\n",
|
||
"C_L = [H, S]\n",
|
||
"basis_vectors = [M([1, 0]), M([0, 1])]\n",
|
||
"\n",
|
||
"def getitem(m, i, j):\n",
|
||
" # Note that sympy uses an extremely weird way to store the matrices,\n",
|
||
" # in particular the internal representation is vastly different from what\n",
|
||
" # is printed. For instance the H matrix is stored as a Mul object\n",
|
||
" # (even after using simplify) instead of a matrix. \n",
|
||
" # Therefore m[i][j] will NOT work. This is a workaround.\n",
|
||
" return (Dagger(basis_vectors[i]) * m * basis_vectors[j])[0]\n",
|
||
"\n",
|
||
"def is_known(C_L, a):\n",
|
||
" for c in C_L:\n",
|
||
" test = c * Dagger(a)\n",
|
||
" if(simplify(getitem(test, 0, 1)) != 0):\n",
|
||
" continue\n",
|
||
" if(simplify(getitem(test, 0, 0) / getitem(test, 1, 1)) == 1):\n",
|
||
" return True\n",
|
||
" return False\n",
|
||
"for i in range(5):\n",
|
||
" for m in (H, S):\n",
|
||
" for c in C_L:\n",
|
||
" c = simplify(c*m)\n",
|
||
" if(is_known(C_L, c)):\n",
|
||
" continue\n",
|
||
" C_L.append(c)\n",
|
||
"C_L"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAALQAAABlCAYAAADkr8m4AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIeklEQVR4Ae1d7Y3cNhTcDVyA08K6geDcQIBsOojdQeIaAuR/kHRgF5A/SQdOOohdgIG7AvIjOaSAXGZuJULeD5JvSZHv0U+AfFpRFGeGI+otpX3ePjw8bCTLdrt9iuNfYn2Fus8ldVseawVnjiajcGnB4wkauYGo7y4I+xtM+2Ium47dT59pbJWLFZw54o3CpRYPnOcWuu3OaQevbp8sCn7GNg9eLnfLD6jwHp/f46TfLPdr27aCM0e3UbhU5PHTGd2+xr5HTy4N/RqNfmTgMxV9lyvQVQF49M0xAAyw3PVo6M+OC/2zK2BZATe05d5z7CcKuKFPJPEdlhVwQ1vuPcd+ooAb+kQS32FZgeUsR5IHvk3ucNArrJyL3uHza/y9xTdPTvmpWazgzBFsFC6teHC+Y36w8syn7XIs5sdoUwAXy3fAxGnnrYcc2nrH8RQp4IYuks8ra1MgO4bGsJ58i4lDfm+CVnDm6DQKl5Y8sg2twaw5JrCC81Pi0rJPPOTIcZYfY0aB7BGajHDr4Cuj30/sOIXH5VtcgfeHTR3/WsGZo9YoXFry4LQd4+MdjLmJrTiGUyPhGH7GynnosE/DthWcOVqNwmVNHjg3p+0g5+FrnsTQrLGfOwLbHKW572bep+HvhEk9zhytRuGyJg+cOxhaGkPzKeGfWLUvVnDm6DgKlyY8RDE0RpTjl6sJ8g77+UsWNYsVnDmCjcKlFQ/pCB36AEE+QxX+SkDtD2UJ1gpOYk0to3BZk8dVhgYgxs78bddzXHmqZjiWprCCc4n50vYoXNbmIQo5KPYMCEbmDxPnEfAen1X9HtEKTmqYWkbh0oKHaISeAHGq7kds33DFNuPov1Od0rLcCs4cTUbh0pKHZNruH3QCp+k+WjE6a5uHTuIEBz4k4nTPO234l3iAL8llebzW7RweOOaqPkG9MG0nDTm+QuU9Vi7MnPTssKnrX+D6PIZourPMPCii5sWE5ikBW/WJyNAAZSLRTIa4ZniMonmrPhHF0ClQXu4K9FbADd27B7z9qgq4oavK6SfrrYAbuncPePtVFXBDV5XTT9ZbATd07x7w9qsqIJq2m5728Mkg53DVJppJKWSJhyWsKd1j5bV4eqKZmMpeZkIBXAx8UuiJZkz0loMUKeAxtEguP1i7Aoyh+abcL1j/i4HFsM4XkqILHtOummgGGPjexR9YJe9fvJgeHz9i18AjKuKiUDvWGv1BuhV4fsBp6OGNx9BUwRfTCuCC8BjadA86+IsKSKfteKtXn2jmItupYLpVmuBhCWtK91h5TZ6SF/xNJJpBzBz9wQGENcPDEtaU7rHyEp6oy5ADpz98zZMYmjXMJ3AheSs8LGGNGTZVVsITdYOhpdN2TZKFAODaiyUelrCW9FsVnqIYGleZiUQzKVUt8bCENaV7rLwWT+kIHTAhiGeooj7RTAB8YcMSD0tYL8idtbuE51WGRoM7IFOfaCalniUelrCmdI+Vl/IUhRwEMjeIW4TqRDMx0azxGEXzFn0iGqEnYdUnmskUzgSPUTRv2SdfojFOY32BUTc1f2sm6Qn48CEQp3NOEslgnyUeSawxrqk+1VJe0ieo+wNWUHnYMOT4FyuX+e/h0/l/TSQ9wajGL6z7icLJi0wgHk1Ec556n70prCmufVBf1WqJt/6aWxTF0BDXRIIWKzjnTij5OwrXWjxEMXSJ8F7XFWihgBu6hcreRjMF3NDNpPaGWijghm6hsrfRTAE3dDOpvaEWCrihW6jsbTRTQDRtNz214mt+nONVm2jGCs4avTwK11o8/EeyNVzl5+iqAC4G/5Fs1x7wxldTwGPo1aT1E/dQIDuGxrB++AViBCUeX66aaCbSdCiygBMY+X5JUcIcEu7NVSOPbENrMGtwbWTDAk5gvAeF4v9SujdXjTw85IhcHF5kT4HsEZrUpluM+gQtVnDWsMsoXGvy4LvDjI93uIWkXvA3kaAFXEzgTOmdUz4K1xIeqBvycmB7IzG0iQQt4GQCZ45hU8eMwrWEB+oGQ0tj6CrJQABg7cUKzho6jMK1Cg9RDI3RwkSiGSs4a7h5FK61eEhH6NAHCOIZqqhPNGMFZxC2YGMUriU8rjI0GtxBd/WJZqzgLPBwqDoK11IeopCD6s0N4hahOtGMFZzBkQUbo3CtwUM0Qk8Nqk/QYgVngYdD1VG41uQhmbZLJj3ByB2dy25Rjt5O4sQxFxPRtMBYq40crrXaKj1PTPMSHqgbpu2kIUdJMhC022aB8NFEMhgNeBHvJzQniWjaoKzWiok+SWme6rNctUSGRqMmEs2kyI/CgzytcGmFUxRDp4zi5a5AbwXc0L17wNuvqoAbuqqcfrLeCrihe/eAt19VATd0VTn9ZL0VcEP37gFvv6oComm76WkOX/PjHK7aRDMphUbhQZ5WuLTC6YlmUu73cvUK4GLxRDPqe8kBXqWAx9BXyeaVtCqQHUNjWO+eaAYYihO0jMKDhtLAJcfYLXFmGxrP4rtnRQKG4gQto/CgkTRwyTF0S5wecuT0iB9jRoHsEZqMplu++kQzKfVH4WGpT1pqLnnBf4gELjDCEDxwK6enTXBZEyfOHV7wpyASQw+RwAWch+AxGdoElzU1x7mDoaUxdJVkIADQexmFB3W0wqUJTlEMjRHBRKKZ1NUyCg/ytMKlFU7pCB28giCfoYr6RDMB8IWNUXiQnhUua+K8ytAAtIN+6hPNXPBw2D0KDxKywmVtnKKQYykcbiGqE80E117YmIW1zsNSn7TSfJ7l4Lfl4/VXdHjIs4FyjsxvsbLOvDLxzNPlcdq3gXcIHtTZCpdaOHGeW6zHPn38TD34OJvvR7zEem65w0G/zwW4wpjA5SSPBY7p/lh8xpjzdxQe5GqFSy2cOA+n6M4u8OGb/wFmtDR28OD1wgAAAABJRU5ErkJggg==\n",
|
||
"text/latex": [
|
||
"$\\displaystyle \\left[\\begin{matrix}\\frac{1}{2} & \\frac{1}{2} & \\frac{1}{2} & \\frac{1}{2}\\\\\\frac{1}{2} & - \\frac{1}{2} & \\frac{1}{2} & - \\frac{1}{2}\\\\\\frac{1}{2} & \\frac{1}{2} & - \\frac{1}{2} & - \\frac{1}{2}\\\\\\frac{1}{2} & - \\frac{1}{2} & - \\frac{1}{2} & \\frac{1}{2}\\end{matrix}\\right]$"
|
||
],
|
||
"text/plain": [
|
||
"⎡1/2 1/2 1/2 1/2 ⎤\n",
|
||
"⎢ ⎥\n",
|
||
"⎢1/2 -1/2 1/2 -1/2⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎢1/2 1/2 -1/2 -1/2⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎣1/2 -1/2 -1/2 1/2 ⎦"
|
||
]
|
||
},
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"H2 = tensorproduct.matrix_tensor_product(H, H)\n",
|
||
"H2"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"zero_state = M([1, 0, 0, 0])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAB0AAABlCAYAAACx4uijAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC/klEQVRoBe1ay03DQBB1EGeUEwWYDkgJhA4QHRBKQFSAQgdJAVxSApRAKAApKYADIArAvOfsrhxn7czYgIOYkSb78ey89dvfZJMky7JEo0mS9KEj6FzTrmi71+v1jqFZhc7gPAhtUSAggalRgd2iwl/GBvuFVrfILwplZpfFMnr7hPITHJ4V6yP5caTuFHV5uyLoBE7XQCINRVXwMy0boqOsykH3yg9/o2ygP8pyJ/QWZ+/Wt8MMTGF0CR1CU5QnSBeYrVxuYlGBuiV1JfZeYdgJvZ2AiunF+OX7ZgVjeTXoz7edOhs+E4NKHW4D5PPdppc9BMU8zq6Zh3D5UC7AwvsqK/sU0+vcjQHAdZqLW6dzFI5clSjR0jsC0LDgmecmNwke7mLRgvItH8XeKwxV9ILa8uHMTixRz4hCLNo3DY4dpYwEBqFSmGkECsAU/jmeA+3MZb9U9LKBBwQYAy2WOYneURbHV6o3dYA8zm4I5gA5rq9QsWjflGuSGwTTIHjLsHZDZU1GC3oCX0Pn7xJgqk3B90MFChBpsO39R1PVmEY9NKg00AakyZv8H3pVS8btSNwIuFYt2N46ozqZSBxTnhB30M+6LmI82wbbzw4nh+F5SIcp9lbV9Y7GHv55K4MmmQXbICIuFmzHeamoVW2DmHkWbFcQGa9W0UsX7qThLP57wfaBI8GncU5WtW2C7UPvmPR+uIJP/bNY2ibYfvEOVWOKcbRg2zMnSjuJHAxUNDZNjVRLxoJtLc2dzF7xmH5DsB0IEYNi3xVdlQfPNZndppcdB8V2s80vYWLRjim/+tvN9o/Rmzv2sS8KdrNdS7V4G3Re2gTboSNa0DbBdjNQC7YDb8KMdhsUuq03M9B6flo+Va1TC7a1bHcye8VjasG2djxpL6aXxhZsgwELtjkVNqTx5uAotb+RbFBaruDM429tMZ0hAgy/v8Emhd5D2cYr/1bSL9nxz8kxfzDLEt4j8Nv1OTQm/K/Rg3+AcXxDnvZrApu1+wjY8ce8qMB2+gXddflBWpRqZgAAAABJRU5ErkJggg==\n",
|
||
"text/latex": [
|
||
"$\\displaystyle \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right]$"
|
||
],
|
||
"text/plain": [
|
||
"⎡1/2⎤\n",
|
||
"⎢ ⎥\n",
|
||
"⎢1/2⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎢1/2⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎣1/2⎦"
|
||
]
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"plus_state = H2 * zero_state\n",
|
||
"plus_state"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"I = M([[1, 0], [0, 1]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"C_L_0 = [tensorproduct.matrix_tensor_product(I, c) for c in C_L]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"C_L_1 = [tensorproduct.matrix_tensor_product(c, I) for c in C_L]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAIgAAABkCAYAAABdPHirAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAHJElEQVR4Ae1d7Y0cNwy9Dfw7MGIgBaw7OCcVxOnAlw6S1JASnA6cDoJcCUkFhq+DSwEBYizSwOXxMDQGa2oo3S5JrUQBws5QGpF8fKP50PBud3V1dY36AVUqtw8PDzdSQ8rGQGC3293Dk73kDWK/e7Zq+BXb1Hld/l7v5PaQCLwVvPoesjckXxPkHRiThBDQGlmEmP927B9mFRJ9RpDjfuI+DqZL0h+orzD4QexkIIReZvq/GP4l6lsvQkfq1qD0sI0C/oC6B+BXUkXbc1QixTtUul+h/s+lvhayRecbHpt0oz5eO1lm9RupW/PJyjaM+xMq1D9cfYENtaDjAfUG9Wd0/l094IwdcIaQsUTGWx6W7ME27RNhzUqkbs0pL9uqCKIZa9xOT1F3go73kL0GUDSbWJVI3ZpPLrZdAkFeA6mPAlo0i1ChdqsSqVvzycW2rglSOTt8pSH5lPZI3Zq9nrZ1TRAAxcHn2WKNHc8qVpeYSN1rP6VtN9t6J4gEzrHsxbHAcT9St+bmWWzrnSA8S0hg8FlE70UsSqRuzR8327omyPI4S2BJlxGWmbz9jdStscPTtq4JsgD1J373Amg8g1C7VYnUrfnkYtslEITe4H4joPUKsrvV2SR0OVkUqVsz3sW27gkCAtBi0kc82j0uHhFqy2PeD9j8kfatSqRuzScv255phnA7gkKMpes+n80fILvD/nsYS58KWBaaLX6BPr7UfIv976CX9FuXSN2ab+a20bruNSotwL0E4CY3fJqX2d4XAjgRaf2LPv/YdX+J6Qu6+axJgswX8yaPkyBNcM3XOQkyX8ybPE6CNME1X+ckyHwxb/I4CdIE13ydkyDzxbzJ4yRIE1zzdU6CzBfzJo+r12JoVLyCDUteWvTTsgCtCU2TtEV+bxWPmBDom4lTeCdPNtJ6jXvyEnTSAiGRYrqkLcJ9qwITk5hg3LbEqWXxJiR5CQBNmbSFIG0Wr5jU3oO4JOlsIhLT2LPfLrbVEsQlSSeGA5tae/bbxTaVIJjK+OPgLST5+9CtPhfV1rPfnrapBEFUOfgHIcL8+X0NiYTDuxb17LebbTUEqYnii5pOA/bp2e+z2EYE+XIJHP8ex5FniWM57TOTrZKXJJ1esp79trbtawZZnUHoMXPpLF1GWDbct6w9++1pGxHkv4UA/MvkWf+6JOmsFXay3bPflrb9w/irM8jS0SVJh43q6Ldnv11sqyIIprSw5KVIsvTst5dtLYt15kk6JTLguZ/OFrrfmS1pqwQJy81jkolTDHX+fkIAJ2QmTn1CIzc2Eai6B9kcIRuHRiAJMnR4T3cuCXI6hkOPkAQZOrynO5cEOR3DoUcggtA6Cv0N9q0FoKFBSOc+Q4Be4xMnHv+Y/x6/9EEwr8ySPMvcCNDXao//KCEvMXMTQfU+CaJCNHeHlrWY0MQpvP6dMmlLo6cHLtcwotvEKaxaEkYmCUI09laFXlogpIXCkKStLdsscYG/l5M4tSwcTZe0hSBtFi9cau9BXJJ0CohE6i6Y1IXYBZdagrgk6RRgj9RdMKkLsQsuKkEwlfGHyVuomLxDidS95Wx0mycuKkEABgf/IADDb19rSCQcrooidavGBXZww6WGIDU4nCVJp0aR0CdSt2BON6Kz4FJDEJ4lJM+ZyVaJU5G6JX97kbnhohIEz9t8aZEuIywzSZyK1N0LEyQ7PHFRCbIYaJmkI2GwlkXqXtvR27YLLrUEcUnSKUQgUnfBpC7ELrhUEQRTWljiVKTuLmhQMMILl5bFOvMknQIWJA7TjXcOdKbSvVZE0hb5vlXMccnEqS34J23DSZGJU5PGvtntqnuQ5lHzgGEQSIIME0obR5IgNrgOM2oSZJhQ2jiSBLHBdZhRkyDDhNLGkSSIDa7DjJoEGSaUNo4kQWxwHWbUlrWYaROn8Oo5NGnrVLbB/muMQWtKT/pPXXRwJk4VkqiATUjSFlZrN5O6tHbYTQuMRIrmpC8ck4lTAEEty6JVSNKWapzSAQQ6y3/qqr0HcUnSKfg8q+4CHL7iWoK4JOkUXJ9VdwEOX7FKEEyz/GHylmX8dftWn+a2WXU3A2V4gEoQ6ObgHwQ7+PP7GhIJh6uiWXWrwHh1qCFIjS1nSdKpUST0mVW3AMX5RTXvQXiWkLTzGT5i4lSk3/TOiWblv1BbZucbPL3cSYF6qkwlCD0uwVgaXzKUZWaJUzPqJrAJd/zQR8mhpfYS45KkU0BiVt0FOHzFtQRxSdIpuD6r7gIcvuIqgmC6mzJxKtJvXxqUtan3IKtDzZN0VrqON2fVfYxD0z7u32j2pfvEJyd9ZeJUE+RzdAaxMnFqjlCf7mXVPcjpanKES0UgCXKpkXOyOwniBPSlqkmCXGrknOxeP+beL6+116pv8S6APtjJMigCiPk9XNuX3COC8H+ckvqYrLFIilIWhgB/kC0a8D9jejx3xeetigAAAABJRU5ErkJggg==\n",
|
||
"text/latex": [
|
||
"$\\displaystyle \\left[\\begin{matrix}1 & 0 & 0 & 0\\\\0 & 1 & 0 & 0\\\\0 & 0 & 1 & 0\\\\0 & 0 & 0 & -1\\end{matrix}\\right]$"
|
||
],
|
||
"text/plain": [
|
||
"⎡1 0 0 0 ⎤\n",
|
||
"⎢ ⎥\n",
|
||
"⎢0 1 0 0 ⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎢0 0 1 0 ⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎣0 0 0 -1⎦"
|
||
]
|
||
},
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"CZ = M([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]])\n",
|
||
"CZ"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAC0AAABlCAYAAADZEWqbAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAD30lEQVR4Ae1cXW7UMBjcVDyj0gcOsEgcgB6B7Q2AB95pj4A4ASo3aA/Qlx4BuAHtAZC2B+ABVhyAZSZ8jtxgb7Lx2CjIllz/xPt5Mpn97HxNttlutwtlaprmEPZeIZ/B9rHStrN1gEmeIW8j+doNHFPSFsadIhM486QEO+sInpbhB57VD6ivvTard732ziaYvcWAW0z4YufA4YPngSEn6Gvt+qAvMOleIAOGJV3Acdk3BCLY1YI+6B+cQ7uCLnWVKtOlmPa9R/Kc+IYvYeQMeYW8RPsC5RregO5UlqSgzWW+laGLGKqajhAj75bJA/od3HlBPu2ylnoWMtAqQGNOaJaaljFNhiARbkffGVt0f0xvcBU2f6qav1LQgHQOgPTTbTI/fYPGE+uSFGp5nALoykPGfTEXGd4cyJIaNFn+IkMXMSSVB6TR37zzJO7QzzsaWVIz3QEzSfBOQ35zmwU0AC8Blno+VnsOsiKVBw06wADLG1G2+SXcoC27/5QybYC5HX1PsAaYuv6OLEtqpumTucCw7BJY7nx315lQUYN+Diwrw8MIk3RRcecpBQ2QqmCNwxcspZoOzpChs4LOQGrQZGU6SEuGzlkyLXV5tiJyIaGvrsEaX2WzlMcsQVPT3IFdIf/yL8G+deg5d7Dmq+FckOkj5NfISaxj39EMZcyRkp7iw8SZBjQFQcpn1S6vBmtiVyNJxwGjNVgTIKXtkmoa3qMGa2JMqzXdzmMbpxqs8VmXMm0MFwnWPLSzcKV/UvvWcwZrHjsw9B4/reFKd2xKmTNY880BUru8GqxxzPZL6RexbzxXu4LOxWzfbmW6z0iuttTl1WDNjstUNb2DHOkhmaYLBGu6E5eBZqCms5q5MktNy5gmuZBIDdbEVKaWRw3WxJiWaroGa2I0o1+t6XYq2zjVYI1PvJRpYzh7sIYnwGeM+E+eJb5Ii5QMGz/MFu112beJfi5AfOvoxu8fqttnMGyrffAKBh/BeDThSpCglQ0g+ElJ6vKGEOCkJMEcqaaHQKuOV9AqJofsVKaHGFIdnyXTRV2erZjJT94UBQ0/zSd7k1+TmqU8Zgl6lDygRe4TPiPvs194act26zRgQ/bkzSjQmHyDmZOe7YcNWTDn/5VHe30Ff0xmya9JjZKHAK8zIXlNqrQ8JMGc0qC5Gia/JlVUHvAgkidvSjPttO1e2pn0mtQ/AW0bp8nBnKLyIM0OMKSS9JqUi3t0cQrYdvVrGE+Khfifh90l8kdkzukygzuHvXH8cRSH4V7JcVxauZ/gb8yEEt8l/BQ6MKUPLDOY89f+BXPcW+IxjsGcYMLYy9/xqBy2/jxphQAAAABJRU5ErkJggg==\n",
|
||
"text/latex": [
|
||
"$\\displaystyle \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right]$"
|
||
],
|
||
"text/plain": [
|
||
"⎡1/2 ⎤\n",
|
||
"⎢ ⎥\n",
|
||
"⎢1/2 ⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎢1/2 ⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎣-1/2⎦"
|
||
]
|
||
},
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"CZ * plus_state"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAHgAAABkCAYAAABNcPQyAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAGmklEQVR4Ae1c/83bNhC1i/5dBCnQAZwNnGaCphskK7QbFOgI6QbpBkW/EbJBkG+DdIAAaT90Afc9R2foU2nxKJI+UjoCsqTTUffjiZJ1fNB+t9sdsXzAEmp3p9PpdeiAy9rIwH6//whPDiFvgN3+69GB37BN5XH7a7zj201m4E3Aqx8he0X5GOC3QNwBDWSrZREw+33qH0Y1Rf8DeKoX3Edn3tL/xPIcJ38IKlUQwq5cqZ9x+mdY3tzqguzdNgE7YTkgYbvQgmNPsBDUt1j4vKb+k5BuDdlg85Wcm7axnJ89Iqu17tE2fP4JC1Jy2n2FjWiD4gOW11h+hvIf0Q4FFTB66Cwvpjs5Lf3BNvd5wVVra7CtArhaBnUn5r/4+4Dqe8heAgSO5lqte9s9APwS6P0dQJCjmI3Ha7XubTcNsHJ0Pq2B7lpsNw0wgBPwZLSOsZRRXesWvQrbrQM8BvTa9rfXDtxA3rzt1gGWURrCSkYY34trtFXYbhrg4XWI4IVuwyKrUn1bi+2mAR6G5TusD8P2eCUjmMdrte5t9wAwK2jfBxB8Dtn9aKQFVLJFq7B9RBpmS5VI4qWECd1fBv1blipZlpyWKv+B7Dj2rcY2bHRnGz5fSpXj2STIrze8F/Jq5nNPRtMHyO6x/x6J5VRjzcbR+ivsya36BfZ/gF3ar926ts15JY5gTiA8Q8Kq/GGpjYCf/3EGMBA4gjn9u+/hGfzYe99LyoADnJSu/pQd4P4wS/LYAU5KV3/KDnB/mCV57AAnpas/ZQe4P8ySPHaAk9LVn7ID3B9mSR47wEnp6k9ZXYtmaCiBmZHPB/ssq7Im7qR7JkTZVLNJOBfr1dMZnerkc9jkBAdBddL9l1xEc45cXWaTVLfooXhtQj5HwdxJ90CMjbnAKonwrwIYJ7UkgDM2q2YZdxHbWoAtCeBW4NKuZdxFbEcBxu1ZyG1ziX46d7DHY5Zxl7QdBRjgCHi8/0+bUEs1F8G0b+v7lnEXs60BWAOEJQFc418tHcu4VbYJ8DdD9LKeJkNG6VTOfbnSapHPQzZvJbOMO9f2d5Kk6Age/ppTP3QbFtnquFyWcZe0TYD/HdCW9bD7aGVJAH/kyI13LOPOsf1J8hQdwYOiJQFcfLVYW8ZdzPYRmYsS36FjRgDHLetMvIcPTrrf7aKEf+TpUqpMmWwwI4DjvZBXM5/3TrpPJPw78R1XzdoaBoQT39cG6rV4tH+yrvV3eeMZcIAbByjXPQc4N4ON93eAGwco1z0HODeDjfcnwKwj8xuUcwXuxsNw9yYZYJmTmJ4/RnrAmoQ2mRmi3FvfGSAb5PyhVr9F9w1k1HsHOJqivhVSatGmxHeU35x0v/BL99rZJBPiO2eS0Exswy4nODjR0RXpHv5eZpNUt+iheG1CfLe0TWYFlq6/dK8CGFdEERI2zrOkWdpe4m+pPkXi1gJchIS9MHJL2wtdLtKtSNxRgHGLFGLdnNdV3qEtbc8FW/tYybijACMYAe8hEJhUvzQXQaB7VGRpO+pcRYVicWsA1sShImFrTrRAx9L2AneLdVHFrQFYRmnIM7nSahHfLW2H4r2VrFjcUYD5qjBEFboNi6wK8d3S9q2QDNkpGXcU4MGBHBJ2KIYUmaXtFD9L6xaJWwtwMRL2gixY2l7gbrEuxeI+wqWmie/wz0n3X0q2fCSuj/iOoJx0jySgvcCS9KV7J76f87aun6F+7198Xxes4Wi0f7LCvV3afAYc4OYhynPQAc7LX/O9HeDmIcpz0AHOy1/zvR3g5iHKc9ABzstf870d4OYhynPQAc7LX/O9nfiugAilv65J99rZJBPyOSa/CcHmbCNmzhwtIt2jnxPfkYRoG4r2JoR/sjqwZJPutc/gIiTsaEbDClu1Hc5GolQLcBESdqJvor5V2xJ/1joKcEkSdqqnW7Wdmqc5/SjA6CzU2IfAiYTeKezKgEqWaKu2s5I27qwBeKx/bVtFwr7WOVO+VduqtGkAllEaOqGMsDUS3y3jDuV6kSwKcEkSdqqHW7Wdmqc5/SjAQ+ciJOw5R2aObdX2TEr0h7QAFyNh6127aG7V9iUBuRvaUqUZ+RwBbtI2HlGLvnSPfF1KlSmTDWbkczi8SduoA/DuxVfQxV+6d+I7sre2NtTQnfi+NmBD8Wj/ZIX6uqyDDDjAHYCU46IDnJO9Dvo6wB2AlOPi+DXpI/59Tc91R1bBVOj77WQAmLFGcLjmEQGWL76HdKp8XCVkyGWLMyCEwOAJ/gPMO+U3kXQlGwAAAABJRU5ErkJggg==\n",
|
||
"text/latex": [
|
||
"$\\displaystyle \\left[\\begin{matrix}1 & 0 & 0 & 0\\\\0 & 1 & 0 & 0\\\\0 & 0 & 1 & 0\\\\0 & 0 & 0 & 1\\end{matrix}\\right]$"
|
||
],
|
||
"text/plain": [
|
||
"⎡1 0 0 0⎤\n",
|
||
"⎢ ⎥\n",
|
||
"⎢0 1 0 0⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎢0 0 1 0⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎣0 0 0 1⎦"
|
||
]
|
||
},
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"I_4 = M([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])\n",
|
||
"I_4"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from itertools import product\n",
|
||
"starting_states = [ c0 * c1 * ent * plus_state for ent, c0, c1 in product((I_4, CZ), C_L_0, C_L_1)]\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"True"
|
||
]
|
||
},
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"len(starting_states) == 2 * 24**2"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle \\left[ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\1\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\i\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- i\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\1\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\i\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- i\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\- \\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\1\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\1\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\0\\\\1\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\0\\\\i\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\1\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\1\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\0\\\\- i\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{i}{2}\\\\- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\- i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} - \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\i\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\i\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\0\\\\i\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\0\\\\-1\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\i\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\i\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\\\\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\0\\\\1\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\- \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\1\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\i\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- i\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\1\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\i\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}1\\\\0\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- i\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\\\i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} - \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2} + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2} + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\2 \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- i\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- i\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\0\\\\- i\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\0\\\\1\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- i\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- i\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\- \\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\0\\\\-1\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\\\0\\\\\\frac{\\sqrt{2} \\left(-1 + i\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\- \\frac{1}{4} - \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} - \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8}\\\\- \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\0\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(-1 + i\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{\\left(-1 + i\\right)^{2}}{8}\\\\\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\left(-1 + i\\right)^{2}}{8} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\left(-1 + i\\right)^{2}}{8} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} - \\frac{\\left(-1 + i\\right)^{2}}{8}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} - \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{i}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\\\\\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} - \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2}\\\\\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{i}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\\\i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\\\frac{1}{4} - \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\\\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right) + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} - \\frac{\\left(\\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{4} + \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\\\- \\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\\\\\frac{1}{2} - \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\\\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} - \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\\\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\\\frac{1}{2} - \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{1}{2} + \\frac{i}{2}\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)\\\\\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2} - \\frac{i}{2}\\\\0\\\\\\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\- \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\\\frac{\\sqrt{2}}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\\\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} + \\frac{\\sqrt{2} i}{4}\\\\- \\frac{\\sqrt{2}}{4} - \\frac{\\sqrt{2} i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2} + \\frac{i}{2}\\\\0\\\\0\\\\- \\frac{1}{2} + \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\\\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2}}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}0\\\\- \\frac{\\sqrt{2} i}{2}\\\\- \\frac{\\sqrt{2} i}{2}\\\\0\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\\\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{1}{2}\\\\\\frac{i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{2}\\\\- \\frac{i}{2}\\\\\\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\\\frac{\\sqrt{2}}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2}}{2}\\\\0\\\\0\\\\- \\frac{\\sqrt{2} i}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{2}\\\\- \\frac{i}{2}\\\\- \\frac{i}{2}\\\\- \\frac{1}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\\\- \\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\- \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i}{4}\\\\\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} - \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\\\\\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} \\left(-1 + i\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{1}{4} - \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\- \\frac{1}{4} + \\frac{i}{4} - \\frac{i \\left(-1 + i\\right)}{4}\\\\\\frac{1}{4} - \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} - \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\\\\\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} - \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{4} + \\frac{i}{4} + \\frac{i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{1}{4} + \\frac{i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} + \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\sqrt{2} \\left(-1 + i\\right)}{8} - \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)\\\\\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\\\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} - \\frac{i}{4}\\\\- \\frac{1}{4} + \\frac{i \\left(-1 + i\\right)}{4} + \\frac{i}{4}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\\\frac{\\sqrt{2} i \\left(-1 + i\\right)}{4}\\\\- \\frac{\\sqrt{2} i \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\- \\frac{\\sqrt{2} i \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right], \\ \\left[\\begin{matrix}\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2} + \\frac{\\left(\\frac{1}{2} - \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(-1 + i\\right)^{2}}{8}\\\\\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(-1 + i\\right)^{2}}{8} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(-1 + i\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{4} + \\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{4} + \\frac{\\left(-1 + i\\right)^{2}}{8} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right) \\left(\\frac{1}{2} - \\frac{i}{2}\\right)}{2}\\\\\\frac{i \\left(-1 + i\\right) \\left(- \\frac{1}{2} + \\frac{i}{2}\\right)}{2} + \\frac{\\left(- \\frac{1}{2} + \\frac{i}{2}\\right)^{2}}{2} + \\frac{\\left(-1 + i\\right)^{2}}{8}\\end{matrix}\\right]\\right]$"
|
||
],
|
||
"text/plain": [
|
||
"⎡ \n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎢ ⎡ √2 ⎤ ⎡√2⎤ ⎡1 ⅈ⎤ ⎡ √2 ⎤ ⎡1 ⅈ⎤ ⎡ √2 ⎤ ⎡1 ⅈ⎤\n",
|
||
"⎢ ⎢ ── ⎥ ⎢──⎥ ⎢─ + ─⎥ ⎢ ── ⎥ ⎢─ + ─⎥ ⎢ ── ⎥ ⎢─ - ─⎥\n",
|
||
"⎢⎡1⎤ ⎢ 2 ⎥ ⎢2 ⎥ ⎡1⎤ ⎢2 2⎥ ⎢ 2 ⎥ ⎢2 2⎥ ⎡0⎤ ⎢ 2 ⎥ ⎡0⎤ ⎢2 2⎥\n",
|
||
"⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
"⎢⎢0⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥\n",
|
||
"⎢⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥\n",
|
||
"⎢⎢0⎥ ⎢√2⋅ⅈ⎥ ⎢√2⎥ ⎢0⎥ ⎢1 ⅈ⎥ ⎢-√2 ⎥ ⎢1 ⅈ⎥ ⎢1⎥ ⎢-√2⋅ⅈ ⎥ ⎢ⅈ⎥ ⎢1 ⅈ⎥\n",
|
||
"⎢⎢ ⎥ ⎢────⎥ ⎢──⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢────⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢──────⎥ ⎢ ⎥ ⎢─ + ─⎥\n",
|
||
"⎢⎣0⎦ ⎢ 2 ⎥ ⎢2 ⎥ ⎣0⎦ ⎢2 2⎥ ⎢ 2 ⎥ ⎢2 2⎥ ⎣0⎦ ⎢ 2 ⎥ ⎣0⎦ ⎢2 2⎥\n",
|
||
"⎢ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
"⎢ ⎣ 0 ⎦ ⎣0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦\n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎢ \n",
|
||
"⎣ \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎡ ⎛1 ⅈ⎞ \n",
|
||
" ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ √2⋅⎜─ - ─⎟ \n",
|
||
" ⎡ 1 ⅈ ⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎡√2⎤ ⎡ √2 ⎤ ⎢ ⎝2 2⎠ \n",
|
||
" ⎢ ─ - ─ ⎥ ⎢────────── + ──────────⎥ ⎢──⎥ ⎢ ── ⎥ ⎢ ────────── +\n",
|
||
" ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ ⎡1⎤ ⎢2 ⎥ ⎡1⎤ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0\n",
|
||
", ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎢ 1 ⅈ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢0⎥ ⎢√2⎥ ⎢0⎥ ⎢√2⋅ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢- ─ + ─⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥ ⎢────⎥ ⎢√2⋅⎜- ─ + ─⎟ \n",
|
||
" ⎢ 2 2⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎣0⎦ ⎢2 ⎥ ⎣0⎦ ⎢ 2 ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
" ⎢ ⎥ ⎢────────── + ──────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢──────────── \n",
|
||
" ⎣ 0 ⎦ ⎢ 2 2 ⎥ ⎣0 ⎦ ⎣ 0 ⎦ ⎢ 2 \n",
|
||
" ⎢ ⎥ ⎢ \n",
|
||
" ⎣ 0 ⎦ ⎣ 0\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎤ ⎡\n",
|
||
" √2⋅⎜─ + ─⎟ ⎥ ⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ ⎢\n",
|
||
" ⎝2 2⎠ ⎥ ⎡√2⋅ⅈ⎤ ⎡ 1 ⅈ ⎤ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟⎥ ⎡-√2 ⎤ ⎢\n",
|
||
" ────────── ⎥ ⎢────⎥ ⎢ ─ + ─ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢────⎥ ⎢\n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ 2 2 ⎥ ⎢────────── + ────────────⎥ ⎢ 2 ⎥ ⎡0 ⎤ ⎢\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ 0 ⎥, ⎢ ⎥, ⎢ ⎥, ⎢\n",
|
||
" ⎛1 ⅈ⎞⎥ ⎢ √2 ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎥ ⎢ √2 ⎥ ⎢-ⅈ⎥ ⎢\n",
|
||
" √2⋅⎜─ + ─⎟⎥ ⎢ ── ⎥ ⎢- ─ - ─⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢ 2 2⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ 2 ⎥ ⎣0 ⎦ ⎢\n",
|
||
"+ ──────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ ⎥ ⎢\n",
|
||
" 2 ⎥ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎢ ⎥ ⎣ 0 ⎦ ⎢\n",
|
||
" ⎥ ⎣ 0 ⎦ ⎢\n",
|
||
" ⎦ ⎣\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" √2⋅⎜─ - ─⎟ ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎡ √2 ⎤ ⎡1/2 ⎤ ⎡1/2⎤ ⎡ √2 ⎤ ⎢ 4 4 ⎥ ⎡\n",
|
||
" ───────────── + ────────── ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢\n",
|
||
" 4 2 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢\n",
|
||
" 0 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 4 4 ⎥ ⎢\n",
|
||
" ⎥, ⎢────⎥, ⎢ ⎥, ⎢ ⎥, ⎢────⎥, ⎢ ⎥, ⎢\n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢1/2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢\n",
|
||
" √2⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢\n",
|
||
"√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢\n",
|
||
"───────────── + ────────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" 4 2 ⎥ ⎣ 0 ⎦ ⎣-1/2⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣\n",
|
||
" ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" 0 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ \n",
|
||
" ⎢ ── + ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ ⎢ \n",
|
||
"1/2 ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡1/2⎤ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ⅈ⋅\n",
|
||
" ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ \n",
|
||
" ─ ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ ⎢──\n",
|
||
" 2 ⎥ ⎢ 4 4 ⎥ ⎢ √2 ⎥ ⎢ 2 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ── ⎥, ⎢ ⎥, ⎢────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"-1/2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢───⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
"-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢-√2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ \n",
|
||
"─── ⎥ ⎢ ⎥ ⎢────⎥ ⎢ ⎥ ⎢────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ⅈ⋅\n",
|
||
" 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 ⎦ ⎣1/2⎦ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ \n",
|
||
" ⎢- ── + ────⎥ ⎢- ── + ────⎥ ⎢- ── - ────⎥ ⎢──\n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1/2 ⎤\n",
|
||
" 1/2 ⎤ ⎢ ⎥\n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥\n",
|
||
"⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡ √2 ⎤ ⎡1/2⎤ ⎡ √2 ⎤ ⎡1/2 ⎤ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟ ⎥\n",
|
||
"⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥\n",
|
||
"⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ ───────── + ───────── ⎥\n",
|
||
"─────── + ─────────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ 2 2 ⎥\n",
|
||
" 2 2 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢ ⎥\n",
|
||
" ⎥, ⎢────⎥, ⎢ ⎥, ⎢────⎥, ⎢ ⎥, ⎢ ⅈ ⎥\n",
|
||
" 1/2 ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ ─ ⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ 2 ⎥\n",
|
||
"⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ ⎥\n",
|
||
"⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥\n",
|
||
"⎝2 2⎠ ⎝2 2⎠⎥ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎣-1/2⎦ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ + ─⎟⎥\n",
|
||
"─────── + ─────────⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥\n",
|
||
" 2 2 ⎦ ⎢─────────── + ─────────⎥\n",
|
||
" ⎣ 2 2 ⎦\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1 ⅈ⋅\n",
|
||
" ⎢ ─ + ──\n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ 0 ⎤ ⎢ 4 \n",
|
||
" ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡-1/2⎤ ⎡ 0 ⎤ ⎢ \n",
|
||
" ⎢ ─ ⎥ ⎢ ⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢-ⅈ ⎥ ⎢ 0 ⎥ ⎢ 1 ⅈ \n",
|
||
" ⎢ ⎥ ⎢- ── + ────⎥ ⎢─────────── + ─────────⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ─ - ─ \n",
|
||
" ⎢-1/2⎥ ⎢ 4 4 ⎥ ⎢ 2 2 ⎥ ⎢ 2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 4 4 \n",
|
||
", ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢──────⎥, ⎢ \n",
|
||
" ⎢1/2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1 ⅈ ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ\n",
|
||
" ⎢ ⎥ ⎢- ── - ────⎥ ⎢ - ─ + ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ─\n",
|
||
" ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 2 2 ⎥ ⎢ ⅈ ⎥ ⎢ √2 ⎥ ⎢ 4 \n",
|
||
" ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ── ⎥ ⎢ \n",
|
||
" ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢ ⎛\n",
|
||
" ⎢ ── - ──── ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ⅈ⋅⎜\n",
|
||
" ⎣ 4 4 ⎦ ⎣ ⎝ 2 2⎠ ⎦ ⎢1 ⎝\n",
|
||
" ⎢─ + ───\n",
|
||
" ⎣4 \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"(-1 + ⅈ) ⅈ ⎤ \n",
|
||
"──────── - ─ ⎥ \n",
|
||
" 4 4 ⎥ ⎡√2 √2⋅ⅈ⎤ ⎡√2 √2⋅ⅈ⎤ \n",
|
||
" ⎥ ⎢── + ────⎥ ⎢── + ────⎥ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎡√2⎤ ⎡1/2⎤ ⎡√2⎤ ⎢4 4 ⎥ ⎢4 4 ⎥ ⎡0\n",
|
||
" ⅈ⋅⎜─ - ─⎟ ⎥ ⎢──⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢2 ⎥ ⎢1/2⎥ ⎡1/2⎤ ⎢2 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎡1/2 ⎤ ⎢√2 √2⋅ⅈ⎥ ⎢0\n",
|
||
"+ ───────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢── + ────⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢√2⎥ ⎢ ⅈ ⎥ ⎢1/2⎥ ⎢√2⎥ ⎢4 4 ⎥ ⎢1/2 ⎥ ⎢4 4 ⎥ ⎢√\n",
|
||
" ⎥, ⎢──⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢──⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢─\n",
|
||
"⋅(-1 + ⅈ) ⅈ⎥ ⎢2 ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢2 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢-1/2⎥ ⎢√2 √2⋅ⅈ⎥ ⎢2\n",
|
||
"───────── + ─⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢── - ────⎥ ⎢ ⎥ ⎢── + ────⎥ ⎢ \n",
|
||
" 4 4⎥ ⎢0 ⎥ ⎢ ⅈ ⎥ ⎣1/2⎦ ⎢0 ⎥ ⎢4 4 ⎥ ⎣-1/2⎦ ⎢4 4 ⎥ ⎢√\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢─\n",
|
||
" 1 ⅈ⎞ ⎥ ⎣0 ⎦ ⎣ 2 ⎦ ⎣0 ⎦ ⎢√2 √2⋅ⅈ⎥ ⎢√2 √2⋅ⅈ⎥ ⎣2\n",
|
||
"- ─ + ─⎟ ⎥ ⎢── - ────⎥ ⎢── + ────⎥ \n",
|
||
" 2 2⎠ ⅈ ⎥ ⎣4 4 ⎦ ⎣4 4 ⎦ \n",
|
||
"──────── - ─ ⎥ \n",
|
||
" 2 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡√2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢── - ────⎥ ⎢ ── - ──── ⎥ \n",
|
||
" ⎤ ⎡1/2⎤ ⎡ 0 ⎤ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎡√2⎤ ⎡√2⎤ ⎡1/2⎤\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢──⎥ ⎢──⎥ ⎢ ⎥\n",
|
||
" ⎥ ⎢1/2⎥ ⎢ 0 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎡1/2⎤ ⎢2 ⎥ ⎡1/2⎤ ⎢2 ⎥ ⎢1/2⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢── - ────⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
"2⎥ ⎢-ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎢1/2⎥ ⎢√2⎥ ⎢1/2⎥ ⎢√2⎥ ⎢ ⅈ ⎥\n",
|
||
"─⎥, ⎢───⎥, ⎢────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢──⎥, ⎢ ⎥, ⎢──⎥, ⎢ ─ ⎥\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢1/2⎥ ⎢2 ⎥ ⎢1/2⎥ ⎢2 ⎥ ⎢ 2 ⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢── + ────⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
"2⎥ ⎢-ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎣1/2⎦ ⎢0 ⎥ ⎣1/2⎦ ⎢0 ⎥ ⎢ ⅈ ⎥\n",
|
||
"─⎥ ⎢───⎥ ⎢────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥\n",
|
||
" ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣0 ⎦ ⎣0 ⎦ ⎣ 2 ⎦\n",
|
||
" ⎢── + ────⎥ ⎢- ── + ────⎥ \n",
|
||
" ⎣4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ 1 ⅈ⋅(-1 + ⅈ) \n",
|
||
" ⎢ ── + ──── ⎥ ⎢ ─ + ────────── -\n",
|
||
" ⎡1/2⎤ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎢ 4 4 \n",
|
||
" ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢1/2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎡-1/2⎤ ⎢ 0 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ + ────────── -\n",
|
||
" ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢-1/2⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 4 4 \n",
|
||
", ⎢ ─ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢- ─ + ─⎥, ⎢ ⎥, ⎢──────⎥, ⎢ \n",
|
||
" ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 2⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ────────── \n",
|
||
" ⎢ ⅈ ⎥ ⎢1/2⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎣1/2 ⎦ ⎢-√2⋅ⅈ ⎥ ⎢ 4 4 \n",
|
||
" ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢──────⎥ ⎢ \n",
|
||
" ⎣ 2 ⎦ ⎣1/2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 2⎦ ⎣ 2 ⎦ ⎢ 1 ⅈ⋅(-1 + ⅈ) \n",
|
||
" ⎢- ── - ────⎥ ⎢- ─ + ────────── \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ ⎤ \n",
|
||
" ─ ⎥ \n",
|
||
" 4 ⎥ ⎡ √2 ⎤ ⎡√2⎤ ⎡1 ⅈ⎤ ⎡ √2 ⎤ ⎡1 ⅈ⎤ ⎡ √2 ⎤ ⎡1\n",
|
||
" ⎥ ⎢ ── ⎥ ⎢──⎥ ⎢─ + ─⎥ ⎢ ── ⎥ ⎢─ + ─⎥ ⎢ ── ⎥ ⎢─\n",
|
||
" ⅈ ⎥ ⎡1⎤ ⎢ 2 ⎥ ⎢2 ⎥ ⎡1⎤ ⎢2 2⎥ ⎢ 2 ⎥ ⎢2 2⎥ ⎡0⎤ ⎢ 2 ⎥ ⎡0⎤ ⎢2\n",
|
||
" ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ⎥ ⎢0⎥ ⎢√2⋅ⅈ⎥ ⎢√2⎥ ⎢0⎥ ⎢1 ⅈ⎥ ⎢-√2 ⎥ ⎢1 ⅈ⎥ ⎢1⎥ ⎢-√2⋅ⅈ ⎥ ⎢ⅈ⎥ ⎢1\n",
|
||
"+ ─⎥ ⎢ ⎥ ⎢────⎥ ⎢──⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢────⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢──────⎥ ⎢ ⎥ ⎢─\n",
|
||
" 4⎥ ⎣0⎦ ⎢ 2 ⎥ ⎢2 ⎥ ⎣0⎦ ⎢2 2⎥ ⎢ 2 ⎥ ⎢2 2⎥ ⎣0⎦ ⎢ 2 ⎥ ⎣0⎦ ⎢2\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ⎥ ⎣ 0 ⎦ ⎣0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ \n",
|
||
"+ ─⎥ \n",
|
||
" 4⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎡ ⎛1 \n",
|
||
" ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ √2⋅⎜─ -\n",
|
||
" ⅈ⎤ ⎡ 1 ⅈ ⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎡√2⎤ ⎡ √2 ⎤ ⎢ ⎝2 \n",
|
||
" - ─⎥ ⎢ ─ - ─ ⎥ ⎢────────── + ──────────⎥ ⎢──⎥ ⎢ ── ⎥ ⎢ ───────\n",
|
||
" 2⎥ ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ ⎡1⎤ ⎢2 ⎥ ⎡1⎤ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢0⎥ ⎢√2⎥ ⎢0⎥ ⎢√2⋅ⅈ⎥ ⎢ ⎛ 1 \n",
|
||
" + ─⎥ ⎢- ─ + ─⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥ ⎢────⎥ ⎢√2⋅⎜- ─ \n",
|
||
" 2⎥ ⎢ 2 2⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎣0⎦ ⎢2 ⎥ ⎣0⎦ ⎢ 2 ⎥ ⎢ ⎝ 2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢────────── + ──────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢────────\n",
|
||
" 0 ⎦ ⎣ 0 ⎦ ⎢ 2 2 ⎥ ⎣0 ⎦ ⎣ 0 ⎦ ⎢ 2 \n",
|
||
" ⎢ ⎥ ⎢ \n",
|
||
" ⎣ 0 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎥ ⎡√2⋅ⅈ⎤ ⎡ 1 ⅈ ⎤ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟⎥ ⎡-√2 ⎤ \n",
|
||
"─── + ────────── ⎥ ⎢────⎥ ⎢ ─ + ─ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢────⎥ \n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ 2 2 ⎥ ⎢────────── + ────────────⎥ ⎢ 2 ⎥ ⎡0\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎢0\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ 0 ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ √2 ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎥ ⎢ √2 ⎥ ⎢-\n",
|
||
"+ ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ── ⎥ ⎢- ─ - ─⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ ── ⎥ ⎢ \n",
|
||
" 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢ 2 2⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ 2 ⎥ ⎣0\n",
|
||
"──── + ──────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ ⎥ \n",
|
||
" 2 ⎥ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎢ ⎥ ⎣ 0 ⎦ \n",
|
||
" ⎥ ⎣ 0 ⎦ \n",
|
||
" 0 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡√2 √2⋅ⅈ⎤ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ── + ──── ⎥ ⎢── + ────⎥ \n",
|
||
" ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎡1 ⅈ⎤ ⎢ 4 4 ⎥ ⎢4 4 ⎥ ⎡1 \n",
|
||
" ⎢ ───────────── + ────────── ⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢ ⎥ ⎢─ + \n",
|
||
" ⎤ ⎢ 4 2 ⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢── - ────⎥ ⎢ \n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢4 4 ⎥ ⎢1 \n",
|
||
" ⎥, ⎢ ⎥, ⎢─ - ─⎥, ⎢ ⎥, ⎢ ⎥, ⎢─ - \n",
|
||
"ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢2 \n",
|
||
" ⎥ ⎢ √2⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢── + ────⎥ ⎢ \n",
|
||
" ⎦ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢4 4 ⎥ ⎢ 0 \n",
|
||
" ⎢───────────── + ────────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ 4 2 ⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢√2 √2⋅ⅈ⎥ ⎣ 0 \n",
|
||
" ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢── - ────⎥ \n",
|
||
" ⎣ 0 ⎦ ⎣ 4 4 ⎦ ⎣4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
"ⅈ⎤ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ ⅈ ⎤ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡1/2⎤ ⎡1/\n",
|
||
"─⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎢-ⅈ ⎥ ⎢-ⅈ\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢───⎥ ⎢──\n",
|
||
"ⅈ⎥ ⎢1/2⎥ ⎢ 4 4 ⎥ ⎢1/2⎥ ⎢1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ 2 ⎥ ⎢ 2\n",
|
||
"─⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢─ + ─⎥, ⎢ ⎥, ⎢- ─ + ─⎥, ⎢ ⎥, ⎢ \n",
|
||
"2⎥ ⎢1/2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2⎥ ⎢ ⅈ ⎥ ⎢-1\n",
|
||
" ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⅈ\n",
|
||
" ⎥ ⎢───⎥ ⎢ ⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢ ⎥ ⎢ ─ + ─ ⎥ ⎢ ⎥ ⎢ ─\n",
|
||
" ⎦ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣1/2⎦ ⎣2 2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 2 ⎦ ⎣1/2⎦ ⎣ 2\n",
|
||
" ⎢- ── + ────⎥ ⎢- ── - ────⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
" ⎢ ────────── + ──────────── + ────────── + ──────────── ⎥ \n",
|
||
" ⎢ 4 4 4 4 ⎥ ⎡√2 \n",
|
||
" ⎢ ⎥ ⎢── +\n",
|
||
"2 ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡1 ⅈ⎤ ⎢4 \n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢─ + ─⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢2 2⎥ ⎢√2 \n",
|
||
"─ ⎥ ⎢- ──────────── + ────────── - ──────────── + ──────────⎥ ⎢ ⎥ ⎢── -\n",
|
||
" ⎥ ⎢ 4 4 4 4 ⎥ ⎢1 ⅈ⎥ ⎢4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢─ - ─⎥, ⎢ \n",
|
||
"/2⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢2 2⎥ ⎢√2 \n",
|
||
" ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢── +\n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ 0 ⎥ ⎢4 \n",
|
||
" ⎥ ⎢ ────────── + ──────────── + ────────── + ──────────── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎦ ⎢ 4 4 4 4 ⎥ ⎣ 0 ⎦ ⎢√2 \n",
|
||
" ⎢ ⎥ ⎢── -\n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣4 \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
" ⎢- ──────────── + ────────── - ──────────── + ──────────⎥ \n",
|
||
" ⎣ 4 4 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎢ ────────── + ──────────── + ────────── + ─\n",
|
||
" √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 4 4 \n",
|
||
" ────⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" 4 ⎥ ⎡1 ⅈ⎤ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ \n",
|
||
" √2⋅ⅈ⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ────⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ - ──────────── + ────────── - ──────────── \n",
|
||
" 4 ⎥ ⎢1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 4 \n",
|
||
" ⎥, ⎢─ - ─⎥, ⎢ ⎥, ⎢ \n",
|
||
" √2⋅ⅈ⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ────⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟\n",
|
||
" 4 ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ────────────── + ──────────── + ────────────\n",
|
||
" √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 4 4 4 \n",
|
||
" ────⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" 4 ⎦ ⎣ 4 4 ⎦ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎢- ──────────── + ──────────── + ────────── - \n",
|
||
" ⎣ 4 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎤ ⎡ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ \n",
|
||
"2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ \n",
|
||
"─────────── ⎥ ⎢ ────────────── + ────────── + ──────\n",
|
||
" 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎢ 4 4 4\n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎡ ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1\n",
|
||
" √2⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─\n",
|
||
" ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2\n",
|
||
"+ ────────── ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢- ──────────── + ────────── + ───────\n",
|
||
" 4 ⎥ ⎢ 4 4 ⎥ ⎢1/2 ⎥ ⎢ 4 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ \n",
|
||
" √2⋅⎜─ + ─⎟ ⎥ ⎢ ── + ──── ⎥ ⎢─── ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜-\n",
|
||
" ⎝2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ ⎝ 2 2⎠ ⎝ \n",
|
||
" + ────────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ────────────── + ─────\n",
|
||
" 4 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣-1/2⎦ ⎢ 2 \n",
|
||
" ⎥ ⎢ ── - ──── ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎛ \n",
|
||
"√2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜-\n",
|
||
" ⎝ 2 2⎠⎥ ⎢ ⎝ 2 2⎠ ⎝ \n",
|
||
"──────────────⎥ ⎢ ──────────── - ───────\n",
|
||
" 4 ⎦ ⎣ 2 2\n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ \n",
|
||
"─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
"2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 +\n",
|
||
"────── + ──────────── ⎥ ⎢ ───────────── - ────────\n",
|
||
" 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎢ 8 8 \n",
|
||
" ⎥ ⎢- ── - ────⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ \n",
|
||
" 2⎠ ⎝ 2 2⎠⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢ ⎝2 2⎠ √2⋅ⅈ⋅(-1\n",
|
||
"───── - ──────────────⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ - ──────────── + ────────\n",
|
||
" 4 ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ ⎥ ⎢ 4 8 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ─ - ─ ⎥, ⎢ \n",
|
||
" 1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ─ + ─⎟ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" 2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 \n",
|
||
"─────── ⎥ ⎢ ⎥ ⎢- ─ - ─⎥ ⎢────────────── + ─────────\n",
|
||
"2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 2⎦ ⎢ 4 8 \n",
|
||
" ⎥ ⎢ ── - ──── ⎥ ⎢ \n",
|
||
" 1 ⅈ⎞ ⎥ ⎣ 4 4 ⎦ ⎢ ⎛ 1 \n",
|
||
" ─ + ─⎟ ⎥ ⎢ √2⋅⎜- ─ + \n",
|
||
" 2 2⎠ ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 \n",
|
||
"─────── ⎥ ⎢───────────── + ──────────\n",
|
||
" ⎦ ⎣ 8 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⅈ) ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"─── + ────────── + ──────────── ⎥ \n",
|
||
" 4 4 ⎥ ⎡ √2 √2⋅\n",
|
||
" ⎥ ⎢ ── + ───\n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎡ √2 ⎤ ⎡1/2 ⎤ ⎡ √2 ⎤ ⎢ 4 4 \n",
|
||
" √2⋅⎜─ - ─⎟ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ \n",
|
||
" + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎢ √2 √2\n",
|
||
"───── + ────────── + ─────────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ──\n",
|
||
" 4 8 ⎥ ⎢-√2 ⎥ ⎢ ⅈ ⎥ ⎢-1/2⎥ ⎢-√2 ⎥ ⎢ 4 4\n",
|
||
" ⎥, ⎢────⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢────⎥, ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅\n",
|
||
" √2⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── - ───\n",
|
||
"+ ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ 0 ⎥ ⎢-ⅈ ⎥ ⎣-1/2⎦ ⎢ 0 ⎥ ⎢ 4 4 \n",
|
||
"──── - ─────────── + ────────────⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 8 4 ⎥ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎢ √2 √2\n",
|
||
" ⎥ ⎢- ── + ──\n",
|
||
"ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎣ 4 4\n",
|
||
"─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ \n",
|
||
"2⎠ √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ \n",
|
||
"── + ─────────── - ──────────────⎥ \n",
|
||
" 8 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2\n",
|
||
"─ ⎥ ⎢ ── + ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──\n",
|
||
" ⎥ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡1/2 ⎤ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎢ 4 4\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⋅ⅈ⎥ ⎡1/2 ⎤ ⎢ √2 √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √\n",
|
||
"──⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢- ── + ─\n",
|
||
" ⎥ ⎢-1/2⎥ ⎢ 4 4 ⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢ √2⋅ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ── ⎥, ⎢─── ⎥, ⎢ ──── ⎥, ⎢ ⎥, ⎢ \n",
|
||
"ⅈ ⎥ ⎢-1/2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √\n",
|
||
"─ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢- ── + ─\n",
|
||
" ⎥ ⎣1/2 ⎦ ⎢ 4 4 ⎥ ⎢-√2 ⎥ ⎢ ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢────⎥ ⎢ ─ ⎥ ⎢──────⎥ ⎢ ⎥ ⎢ \n",
|
||
"⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √2\n",
|
||
"──⎥ ⎢- ── - ────⎥ ⎢- ── - ────⎥ ⎢ ── - ──\n",
|
||
" ⎦ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 4 4\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
"── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⎥ ⎡ √2 ⎤ ⎡ √2 ⎤ ⎡1/2 ⎤ ⎡1/2 ⎤ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎡\n",
|
||
" ⎥ ⎢ ── ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢\n",
|
||
"2⋅ⅈ⎥ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢-1/2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢\n",
|
||
"───⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢\n",
|
||
"4 ⎥ ⎢-1/2⎥ ⎢-√2 ⎥ ⎢-1/2⎥ ⎢-√2 ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢\n",
|
||
" ⎥, ⎢ ⎥, ⎢────⎥, ⎢ ⎥, ⎢────⎥, ⎢ ─ ⎥, ⎢ ─ ⎥, ⎢─── ⎥, ⎢ ⎥, ⎢\n",
|
||
"2⋅ⅈ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢\n",
|
||
"───⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢\n",
|
||
"4 ⎥ ⎣-1/2⎦ ⎢ 0 ⎥ ⎣-1/2⎦ ⎢ 0 ⎥ ⎢-ⅈ ⎥ ⎢-ⅈ ⎥ ⎢1/2 ⎥ ⎢ 4 4 ⎥ ⎢\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
"⋅ⅈ ⎥ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣-1/2⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣\n",
|
||
"── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡√\n",
|
||
" ⎢ ─ + ────────── - ─ ⎥ ⎢ ── + ──── ⎥ ⎢─\n",
|
||
" 0 ⎤ ⎡ 0 ⎤ ⎢ 4 4 4 ⎥ ⎡1 ⅈ⎤ ⎢ 4 4 ⎥ ⎢4\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢ \n",
|
||
" 0 ⎥ ⎡-1/2⎤ ⎢ 0 ⎥ ⎢ 1 ⅈ ⅈ⋅(-1 + ⅈ)⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢√\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ─ - ──────────⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢─\n",
|
||
" 1 ⅈ⎥ ⎢1/2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 4 4 4 ⎥ ⎢1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢4\n",
|
||
"- ─ + ─⎥, ⎢ ⎥, ⎢──────⎥, ⎢ ⎥, ⎢─ + ─⎥, ⎢ ⎥, ⎢ \n",
|
||
" 2 2⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢√\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ────────── + ─⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢─\n",
|
||
" 1 ⅈ ⎥ ⎣-1/2⎦ ⎢ √2⋅ⅈ ⎥ ⎢ 4 4 4⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢4\n",
|
||
" ─ - ─ ⎥ ⎢ ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 2 2 ⎦ ⎣ 2 ⎦ ⎢ 1 ⅈ ⅈ⋅(-1 + ⅈ) ⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢√\n",
|
||
" ⎢ ─ - ─ - ────────── ⎥ ⎢- ── + ────⎥ ⎢─\n",
|
||
" ⎣ 4 4 4 ⎦ ⎣ 4 4 ⎦ ⎣4\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ⅈ⎤ ⎡√2 √2⋅ⅈ⎤ \n",
|
||
"─ + ────⎥ ⎢ ── + ──── ⎥ ⎢─⎥ ⎢── + ────⎥ \n",
|
||
" 4 ⎥ ⎡1 ⅈ⎤ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎢2⎥ ⎡ 0 ⎤ ⎢4 4 ⎥ ⎡ 0 ⎤\n",
|
||
" ⎥ ⎢─ + ─⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
"2 √2⋅ⅈ⎥ ⎢2 2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ⅈ⎥ ⎢ 0 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ 0 ⎥\n",
|
||
"─ + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢─⎥ ⎢ ⎥ ⎢── + ────⎥ ⎢ ⎥\n",
|
||
" 4 ⎥ ⎢1 ⅈ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢2⎥ ⎢1 ⅈ⎥ ⎢4 4 ⎥ ⎢ 1 ⅈ⎥\n",
|
||
" ⎥, ⎢─ + ─⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢─ + ─⎥, ⎢ ⎥, ⎢- ─ + ─⎥\n",
|
||
"2 √2⋅ⅈ⎥ ⎢2 2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ⅈ⎥ ⎢2 2⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ 2 2⎥\n",
|
||
"─ + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢─⎥ ⎢ ⎥ ⎢── - ────⎥ ⎢ ⎥\n",
|
||
" 4 ⎥ ⎢ 0 ⎥ ⎢1/2⎥ ⎢ 4 4 ⎥ ⎢2⎥ ⎢1 ⅈ⎥ ⎢4 4 ⎥ ⎢ 1 ⅈ⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢- ─ + ─⎥\n",
|
||
"2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎣1/2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ⅈ⎥ ⎣2 2⎦ ⎢√2 √2⋅ⅈ⎥ ⎣ 2 2⎦\n",
|
||
"─ + ────⎥ ⎢- ── - ────⎥ ⎢─⎥ ⎢── - ────⎥ \n",
|
||
" 4 ⎦ ⎣ 4 4 ⎦ ⎣2⎦ ⎣4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
" ⎢√2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
" ⎢────────── + ──────────── + ────────── + ────────────⎥ \n",
|
||
" ⎢ 4 4 4 4 ⎥ \n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎡1/2⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡1 \n",
|
||
" ⎢ ⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢─ +\n",
|
||
" ⎢1/2⎥ ⎡1/2 ⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢2 \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢────────── + ──────────── + ────────── + ────────────⎥ ⎢ \n",
|
||
" ⎢ ⅈ ⎥ ⎢1/2 ⎥ ⎢ 4 4 4 4 ⎥ ⎢1 \n",
|
||
", ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢─ +\n",
|
||
" ⎢ 2 ⎥ ⎢-1/2⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢2 \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ \n",
|
||
" ⎢ ⅈ ⎥ ⎣-1/2⎦ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 0\n",
|
||
" ⎢ ─ ⎥ ⎢────────── + ──────────── + ────────── + ────────────⎥ ⎢ \n",
|
||
" ⎣ 2 ⎦ ⎢ 4 4 4 4 ⎥ ⎣ 0\n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ \n",
|
||
" ⎢√2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
" ⎢────────── + ──────────── + ────────── + ────────────⎥ \n",
|
||
" ⎣ 4 4 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1\n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2\n",
|
||
" ⎢ ────────── + ──────────── + ─────\n",
|
||
" ⎡√2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 4 4\n",
|
||
" ⎢── + ────⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⅈ⎤ ⎢4 4 ⎥ ⎡1 ⅈ⎤ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1\n",
|
||
" ─⎥ ⎢ ⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─\n",
|
||
" 2⎥ ⎢√2 √2⋅ⅈ⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2\n",
|
||
" ⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ────────── + ──────────── + ─────\n",
|
||
" ⅈ⎥ ⎢4 4 ⎥ ⎢1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 4\n",
|
||
" ─⎥, ⎢ ⎥, ⎢─ + ─⎥, ⎢ ⎥, ⎢ \n",
|
||
" 2⎥ ⎢√2 √2⋅ⅈ⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅\n",
|
||
" ⎥ ⎢4 4 ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢────────────── + ──────────── + ───\n",
|
||
" ⎦ ⎢√2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ 4 4 \n",
|
||
" ⎢── + ────⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" ⎣4 4 ⎦ ⎣ 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅\n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ \n",
|
||
" ⎢────────────── + ──────────── + ───\n",
|
||
" ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ \n",
|
||
"───── + ──────────── ⎥ ⎢────────────── + ────────── + \n",
|
||
" 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎡ ⅈ ⎤ ⎢ 4 4 \n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ \n",
|
||
"───── + ──────────── ⎥ ⎢- ── + ────⎥ ⎢ ─ ⎥ ⎢────────────── + ────────── + \n",
|
||
" 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ── + ──── ⎥ ⎢───⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"───────── + ──────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ────────────── +\n",
|
||
" 4 4 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢───⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎣ 2 ⎦ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"───────── + ──────────⎥ ⎢ ────────────── +\n",
|
||
" 4 4 ⎦ ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎡ \n",
|
||
"√2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-\n",
|
||
"──────────── + ────────────⎥ ⎢ ───────────── - ─────\n",
|
||
" 4 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎢ 8 \n",
|
||
" ⎥ ⎢- ── - ────⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎢ \n",
|
||
"√2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-\n",
|
||
"──────────── + ────────────⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢ ───────────── - ─────\n",
|
||
" 4 4 ⎥ ⎢ 4 4 ⎥ ⎢1 ⅈ⎥ ⎢ 8 \n",
|
||
" ⎥, ⎢ ⎥, ⎢─ - ─⎥, ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢2 2⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢1 ⅈ⎥ ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(\n",
|
||
" ──────────── ⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢────────────── + ──────\n",
|
||
" 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣2 2⎦ ⎢ 4 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎣ 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(\n",
|
||
" ──────────── ⎥ ⎢────────────── + ──────\n",
|
||
" 2 ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
"1 + ⅈ) ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"────── + ────────── + ──────────── ⎥ \n",
|
||
"8 4 4 ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎡ 0 ⎤ ⎡0 ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤\n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
"1 + ⅈ) ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎡0⎤ ⎢ √2 ⎥ ⎢√2⎥ ⎡0⎤ ⎢1 ⅈ⎥ ⎢ √2 ⎥\n",
|
||
"────── + ────────── + ──────────── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢──⎥ ⎢ ⎥ ⎢─ + ─⎥ ⎢ ── ⎥\n",
|
||
"8 4 4 ⎥ ⎢1⎥ ⎢ 2 ⎥ ⎢2 ⎥ ⎢1⎥ ⎢2 2⎥ ⎢ 2 ⎥\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥\n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥\n",
|
||
" √2⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
"-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎣0⎦ ⎢√2⋅ⅈ⎥ ⎢√2⎥ ⎣0⎦ ⎢1 ⅈ⎥ ⎢-√2 ⎥\n",
|
||
"─────── - ─────────── + ────────────⎥ ⎢────⎥ ⎢──⎥ ⎢─ - ─⎥ ⎢────⎥\n",
|
||
"8 8 4 ⎥ ⎣ 2 ⎦ ⎣2 ⎦ ⎣2 2⎦ ⎣ 2 ⎦\n",
|
||
" ⎥ \n",
|
||
" ⎛ 1 ⅈ⎞⎥ \n",
|
||
" √2⋅⎜- ─ + ─⎟⎥ \n",
|
||
"-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ \n",
|
||
"─────── - ─────────── + ────────────⎥ \n",
|
||
"8 8 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 0 ⎤ \n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ \n",
|
||
" ⎢1 ⅈ⎥ ⎡0⎤ ⎢ √2 ⎥ ⎡0⎤ ⎢1 ⅈ⎥ ⎢ 1 ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
" ⎢─ + ─⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢ ─ - ─ ⎥ ⎢────────── + ──────────⎥ \n",
|
||
" ⎢2 2⎥ ⎢0⎥ ⎢ 2 ⎥ ⎢0⎥ ⎢2 2⎥ ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ \n",
|
||
", ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, \n",
|
||
" ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎢1 ⅈ⎥ ⎣1⎦ ⎢-√2⋅ⅈ ⎥ ⎣ⅈ⎦ ⎢1 ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ \n",
|
||
" ⎢─ + ─⎥ ⎢──────⎥ ⎢─ + ─⎥ ⎢- ─ + ─⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ \n",
|
||
" ⎣2 2⎦ ⎣ 2 ⎦ ⎣2 2⎦ ⎣ 2 2⎦ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
" ⎢────────── + ──────────⎥ \n",
|
||
" ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 0 ⎤ \n",
|
||
" ⎢ ⎥ ⎡ \n",
|
||
" ⎡0 ⎤ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎢ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎛1\n",
|
||
"⎡0⎤ ⎢√2⎥ ⎡0⎤ ⎢ √2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢√2⋅ⅈ⎥ ⎢ 1 ⅈ ⎥ ⎢√2⋅⎜─\n",
|
||
"⎢ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ────────── + ────────── ⎥ ⎢────⎥ ⎢ ─ + ─ ⎥ ⎢ ⎝2\n",
|
||
"⎢1⎥ ⎢2 ⎥ ⎢1⎥ ⎢ 2 ⎥ ⎢ 2 2 ⎥ ⎢ 2 ⎥ ⎢ 2 2 ⎥ ⎢─────\n",
|
||
"⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ 2\n",
|
||
"⎢0⎥ ⎢0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ \n",
|
||
"⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎣0⎦ ⎢√2⎥ ⎣0⎦ ⎢√2⋅ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ √2 ⎥ ⎢ 1 ⅈ⎥ ⎢ \n",
|
||
" ⎢──⎥ ⎢────⎥ ⎢√2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ── ⎥ ⎢- ─ - ─⎥ ⎢ \n",
|
||
" ⎣2 ⎦ ⎣ 2 ⎦ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎣ 2 ⎦ ⎣ 2 2⎦ ⎢ \n",
|
||
" ⎢──────────── + ──────────⎥ ⎣ \n",
|
||
" ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 0 ⎤ \n",
|
||
" 0 ⎤ ⎢ ⎥ \n",
|
||
" ⎥ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡ √2 ⎤ \n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ── ⎥ \n",
|
||
" - ─⎟ √2⋅⎜- ─ + ─⎟⎥ ⎢-√2 ⎥ ⎡0 ⎤ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ 2 ⎥ \n",
|
||
" 2⎠ ⎝ 2 2⎠⎥ ⎢────⎥ ⎢ ⎥ ⎢ ───────────── + ────────── ⎥ ⎢ ⎥ \n",
|
||
"───── + ────────────⎥ ⎢ 2 ⎥ ⎢0 ⎥ ⎢ 4 2 ⎥ ⎢-√2⋅ⅈ ⎥ \n",
|
||
" 2 ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢──────⎥,\n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ \n",
|
||
" 0 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎥ ⎢ √2 ⎥ ⎣-ⅈ⎦ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ 0 ⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ ── ⎥ ⎢ √2⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ \n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎣ 2 ⎦ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎣ 0 ⎦ \n",
|
||
" ⎝ 2 2⎠ ⎦ ⎢───────────── + ────────────⎥ \n",
|
||
" ⎣ 4 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡√2 √2⋅ⅈ⎤ \n",
|
||
" ⎢ ── + ──── ⎥ ⎢── + ────⎥ \n",
|
||
" ⎡1/2⎤ ⎡1/2⎤ ⎡ √2 ⎤ ⎢ 4 4 ⎥ ⎡1/2 ⎤ ⎢4 4 ⎥ ⎡ 0 ⎤ ⎡1/2 ⎤ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎢-ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢-ⅈ ⎥ \n",
|
||
" ⎢───⎥ ⎢───⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢─── ⎥ ⎢── - ────⎥ ⎢ ⎥ ⎢─── ⎥ \n",
|
||
" ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢4 4 ⎥ ⎢ √2 ⎥ ⎢ 2 ⎥ \n",
|
||
" ⎢ ⎥, ⎢ ⎥, ⎢──────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ── ⎥, ⎢ ⎥,\n",
|
||
" ⎢ ⅈ ⎥ ⎢1/2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ \n",
|
||
" ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢─── ⎥ \n",
|
||
" ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ ⅈ ⎥ ⎢4 4 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 2 ⎥ \n",
|
||
" ⎢ ⎥ ⎢───⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢──────⎥ ⎢ ⎥ \n",
|
||
" ⎣1/2⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 ⎦ ⎢√2 √2⋅ⅈ⎥ ⎣ 2 ⎦ ⎣-1/2⎦ \n",
|
||
" ⎢- ── - ────⎥ ⎢── - ────⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ 1/2 ⎤ \n",
|
||
" ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ \n",
|
||
" ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡ √2 ⎤ ⎡1\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢ ── ⎥ ⎢ \n",
|
||
" ⎢ 0 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢-\n",
|
||
" ⎢ ⎥ ⎢- ── - ────⎥ ⎢- ── - ────⎥ ⎢- ───────── - ─────────⎥ ⎢ ⎥ ⎢─\n",
|
||
" ⎢√2⋅ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ \n",
|
||
" ⎢────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢──────⎥, ⎢ \n",
|
||
" ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1/2 ⎥ ⎢ 2 ⎥ ⎢1\n",
|
||
" ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ √2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 0 ⎥ ⎢-\n",
|
||
" ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢─\n",
|
||
" ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎣ 0 ⎦ ⎣ \n",
|
||
" ⎢ ── - ──── ⎥ ⎢ ── + ──── ⎥ ⎢- ───────── - ─────────⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1/2 ⎤ \n",
|
||
" ⎢ ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎡ \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
"/2⎤ ⎡ √2 ⎤ ⎡1/2⎤ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜─ + ─⎟ ⎥ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⅈ⋅\n",
|
||
"ⅈ ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ - ───────── - ───────── ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ \n",
|
||
"──⎥ ⎢ ⎥ ⎢───⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢- ──\n",
|
||
"2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢1/2⎥ ⎢ 4 4 ⎥ ⎢ \n",
|
||
" ⎥, ⎢──────⎥, ⎢ ⎥, ⎢ ⅈ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"/2⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ ─ ⎥ ⎢1/2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ \n",
|
||
"ⅈ ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ \n",
|
||
"──⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢───⎥ ⎢ ⎥ ⎢ \n",
|
||
"2 ⎦ ⎣ 0 ⎦ ⎣1/2⎦ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜- ─ + ─⎟⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" ⎢- ───────── - ───────────⎥ ⎣ 4 4 ⎦ ⎣ \n",
|
||
" ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ \n",
|
||
" ⎢ ─ + ────────── - ─ ⎥ \n",
|
||
" 0 ⎤ ⎢ 4 4 4 ⎥ \n",
|
||
" ⎥ ⎢ ⎥ \n",
|
||
"⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎡-1/2⎤ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡ 0 ⎤\n",
|
||
"⎜─ - ─⎟ ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥\n",
|
||
"⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ 1 ⎝2 2⎠ ⅈ ⎥ ⎡0⎤ ⎢√2⋅ⅈ⎥\n",
|
||
"─────── - ───────────⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ - ─ - ───────── + ─ ⎥ ⎢ ⎥ ⎢────⎥\n",
|
||
" 2 2 ⎥ ⎢ 2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 4 2 4 ⎥ ⎢ⅈ⎥ ⎢ 2 ⎥\n",
|
||
" ⎥, ⎢ ⎥, ⎢──────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥\n",
|
||
" 1 ⅈ ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢0⎥ ⎢ 0 ⎥\n",
|
||
" - ─ + ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ────────── + ─ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
" 2 2 ⎥ ⎢-ⅈ ⎥ ⎢ -√2 ⎥ ⎢ 4 4 4 ⎥ ⎣0⎦ ⎢-√2 ⎥\n",
|
||
" ⎥ ⎢─── ⎥ ⎢ ──── ⎥ ⎢ ⎥ ⎢────⎥\n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢ ⎛ 1 ⅈ⎞⎥ ⎣ 2 ⎦\n",
|
||
" -ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟⎥ \n",
|
||
" ⎝ 2 2⎠ ⎦ ⎢ 1 ⅈ ⎝ 2 2⎠⎥ \n",
|
||
" ⎢- ─ + ─ - ───────────⎥ \n",
|
||
" ⎣ 4 4 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎢√2⋅ⅈ⎥ ⎡0⎤ ⎢ 1 ⅈ⎥ ⎢ √2⋅ⅈ ⎥ ⎢ 1 ⅈ⎥ ⎡0⎤ ⎢√2⋅ⅈ⎥ ⎡0 ⎤ ⎢ 1 ⅈ ⎥ ⎢\n",
|
||
" ⎢────⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢ ──── ⎥ ⎢- ─ + ─⎥ ⎢ ⎥ ⎢────⎥ ⎢ ⎥ ⎢ ─ + ─ ⎥ ⎢\n",
|
||
" ⎢ 2 ⎥ ⎢ⅈ⎥ ⎢ 2 2⎥ ⎢ 2 ⎥ ⎢ 2 2⎥ ⎢0⎥ ⎢ 2 ⎥ ⎢0 ⎥ ⎢ 2 2 ⎥ ⎢\n",
|
||
", ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢\n",
|
||
" ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢ 0 ⎥ ⎢\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎢√2⋅ⅈ⎥ ⎣0⎦ ⎢ 1 ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 1 ⅈ⎥ ⎣ⅈ⎦ ⎢ √2 ⎥ ⎣-1⎦ ⎢ 1 ⅈ⎥ ⎢\n",
|
||
" ⎢────⎥ ⎢ ─ + ─ ⎥ ⎢──────⎥ ⎢- ─ + ─⎥ ⎢ ── ⎥ ⎢- ─ + ─⎥ ⎢\n",
|
||
" ⎣ 2 ⎦ ⎣ 2 2 ⎦ ⎣ 2 ⎦ ⎣ 2 2⎦ ⎣ 2 ⎦ ⎣ 2 2⎦ ⎣\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 0 ⎤ ⎡ \n",
|
||
" ⎢ ⎥ ⎢ \n",
|
||
" 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎢ ⎛1 \n",
|
||
" ⎥ ⎢√2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ +\n",
|
||
" 1 ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎡0⎤ ⎢√2⋅ⅈ⎥ ⎡0⎤ ⎢√2⋅ⅈ⎥ ⎢ ⎝2 \n",
|
||
" ─ + ─ ⎥ ⎢──────────── + ────────────⎥ ⎢ ⎥ ⎢────⎥ ⎢ ⎥ ⎢────⎥ ⎢ ─────────\n",
|
||
" 2 2 ⎥ ⎢ 2 2 ⎥ ⎢ⅈ⎥ ⎢ 2 ⎥ ⎢ⅈ⎥ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" 0 ⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 1 ⅈ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣0⎦ ⎢√2⋅ⅈ⎥ ⎣0⎦ ⎢-√2 ⎥ ⎢ ⎛ 1 \n",
|
||
"- ─ - ─⎥ ⎢√2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢────⎥ ⎢────⎥ ⎢√2⋅ⅈ⋅⎜- ─ \n",
|
||
" 2 2⎦ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢ ⎝ 2 \n",
|
||
" ⎢──────────── + ────────────⎥ ⎢──────────\n",
|
||
" ⎣ 2 2 ⎦ ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" 0 ⎤ \n",
|
||
" ⎥ ⎡ 0 ⎤ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎢ ⎥ ⎡ 0\n",
|
||
" ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎥ ⎢-√2 ⎥ ⎢ 1 ⅈ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢-√2\n",
|
||
"─── + ──────────── ⎥ ⎢────⎥ ⎢- ─ + ─⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢───\n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ 2 2⎥ ⎢────────────── + ────────────⎥ ⎢ 2\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ 2 2 ⎥, ⎢ \n",
|
||
" 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ 0\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢√2⋅ⅈ⎥ ⎢ 1 ⅈ ⎥ ⎢ ⎥ ⎢ √2\n",
|
||
"+ ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢────⎥ ⎢ ─ - ─ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ ──\n",
|
||
" 2⎠ ⎝2 2⎠⎥ ⎣ 2 ⎦ ⎣ 2 2 ⎦ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎣ 2\n",
|
||
"──── + ────────────⎥ ⎣ ⎝ 2 2⎠ ⎦ \n",
|
||
" 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 0 ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡√2 √2⋅ⅈ⎤\n",
|
||
" ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢── - ────⎥\n",
|
||
" ⎤ ⎢ ⎛1 ⅈ⎞⎥ ⎡1 ⅈ⎤ ⎢ 4 4 ⎥ ⎢4 4 ⎥\n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢─ - ─⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
"⋅ⅈ ⎥ ⎡0⎤ ⎢ √2⋅(-1 + ⅈ) ⎝2 2⎠⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢√2 √2⋅ⅈ⎥\n",
|
||
"───⎥ ⎢ ⎥ ⎢- ─────────── + ────────────⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢── + ────⎥\n",
|
||
" ⎥ ⎢0⎥ ⎢ 4 2 ⎥ ⎢1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢4 4 ⎥\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢─ + ─⎥, ⎢ ⎥, ⎢ ⎥\n",
|
||
" ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢√2 √2⋅ⅈ⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢── - ────⎥\n",
|
||
"⋅ⅈ ⎥ ⎣1⎦ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢4 4 ⎥\n",
|
||
"── ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
" ⎦ ⎢ ⎝ 2 2⎠ √2⋅(-1 + ⅈ)⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢√2 √2⋅ⅈ⎥\n",
|
||
" ⎢────────────── - ───────────⎥ ⎢- ── + ────⎥ ⎢── + ────⎥\n",
|
||
" ⎣ 2 4 ⎦ ⎣ 4 4 ⎦ ⎣4 4 ⎦\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ \n",
|
||
" ⎡1 ⅈ⎤ ⎡1/2⎤ ⎢ 4 4 ⎥ ⎡1/2⎤ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡-ⅈ\n",
|
||
" ⎢─ - ─⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢──\n",
|
||
" ⎢2 2⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎢ 2\n",
|
||
" ⎢ ⎥ ⎢ ─ ⎥ ⎢ ── + ──── ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢1 ⅈ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ ⎥ ⎢1/\n",
|
||
", ⎢─ + ─⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢─ - ─⎥, ⎢ ⎥, ⎢ ─ + ─ ⎥, ⎢ \n",
|
||
" ⎢2 2⎥ ⎢-ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢1/2⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 2 ⎥ ⎢1/\n",
|
||
" ⎢ ⎥ ⎢───⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ ⅈ ⎥ ⎢1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ ⅈ\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢ ─\n",
|
||
" ⎣ 0 ⎦ ⎣1/2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 ⎦ ⎣2 2⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 2⎦ ⎣ 2\n",
|
||
" ⎢- ── - ────⎥ ⎢ ── - ──── ⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
" ⎢- ──────────── + ────────── - ──────────── + ──────────⎥ \n",
|
||
" ⎢ 4 4 4 4 ⎥ \n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎤ ⎡-ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎡1 ⅈ⎤\n",
|
||
"─⎥ ⎢─── ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢─ - ─⎥\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢2 2⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ────────── + ──────────── + ────────── + ──────────── ⎥ ⎢ ⎥\n",
|
||
"2⎥ ⎢1/2 ⎥ ⎢ 4 4 4 4 ⎥ ⎢1 ⅈ⎥\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢─ + ─⎥\n",
|
||
"2⎥ ⎢ ⅈ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢2 2⎥\n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎥\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 0 ⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢- ──────────── + ────────── - ──────────── + ──────────⎥ ⎢ ⎥\n",
|
||
" ⎦ ⎣-1/2⎦ ⎢ 4 4 4 4 ⎥ ⎣ 0 ⎦\n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
" ⎢ ────────── + ──────────── + ────────── + ──────────── ⎥ \n",
|
||
" ⎣ 4 4 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛\n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝\n",
|
||
" ⎢ - ──────────── + ────────── - ──────\n",
|
||
" ⎡√2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 4 4\n",
|
||
" ⎢── - ────⎥ ⎢ ── - ──── ⎥ ⎢ \n",
|
||
" ⎢4 4 ⎥ ⎡1 ⅈ⎤ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⎢ ⎥ ⎢─ - ─⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ +\n",
|
||
" ⎢√2 √2⋅ⅈ⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
" ⎢── + ────⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ────────── + ──────────── + ───────\n",
|
||
" ⎢4 4 ⎥ ⎢1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 4 \n",
|
||
", ⎢ ⎥, ⎢─ + ─⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎢√2 √2⋅ⅈ⎥ ⎢2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 \n",
|
||
" ⎢── - ────⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ \n",
|
||
" ⎢4 4 ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ──────────── + ──────────── + ──────\n",
|
||
" ⎢√2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ 4 4 4 \n",
|
||
" ⎢── + ────⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" ⎣4 4 ⎦ ⎣ 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅\n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ \n",
|
||
" ⎢ ────────────── + ──────────── + ─────\n",
|
||
" ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ \n",
|
||
"2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"────── + ────────── ⎥ ⎢- ──────────── + ────────── + \n",
|
||
" 4 ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎡1/2 ⎤ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ \n",
|
||
"─── + ──────────── ⎥ ⎢- ── + ────⎥ ⎢ ─ ⎥ ⎢ ────────────── + ────────── +\n",
|
||
" 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"+ ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ √2⋅⎜- ─ + ─⎟ \n",
|
||
" 2⎠ ⎝ 2 2⎠⎥ ⎢ 4 4 ⎥ ⎢-ⅈ ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"──── - ──────────────⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ──────────── - \n",
|
||
" 4 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 ⎦ ⎢ 2 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
"⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎣ 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
"⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"─────── + ────────── ⎥ ⎢ ────────────── \n",
|
||
"4 4 ⎦ ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ ⎡ ⎛1 ⅈ⎞ \n",
|
||
"√2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ \n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⎝2 2⎠ √\n",
|
||
"──────────── - ──────────────⎥ ⎢ - ──────────── + ─\n",
|
||
" 4 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎢ 4 \n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎢ \n",
|
||
" √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) √\n",
|
||
" ──────────── + ──────────── ⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢ ───────────── - ─\n",
|
||
" 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ 8 \n",
|
||
" ⎥, ⎢ ⎥, ⎢- ─ - ─⎥, ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2⎥ ⎢ \n",
|
||
"√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ √2⋅\n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) \n",
|
||
"────────────── ⎥ ⎢ ⎥ ⎢ ─ - ─ ⎥ ⎢───────────── + ───\n",
|
||
" 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 2 ⎦ ⎢ 8 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎣ 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢ ⎝ 2 2⎠ √2\n",
|
||
"+ ──────────── ⎥ ⎢────────────── + ──\n",
|
||
" 2 ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎤ \n",
|
||
" √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
"2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎥ \n",
|
||
"──────────── + ────────── + ─────────── ⎥ \n",
|
||
" 8 4 8 ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2\n",
|
||
" ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──\n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎡ 1 ⅈ ⎤ ⎢ 4 4 ⎥ ⎢ 4 4\n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ─ - ─ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"2⋅(-1 + ⅈ) ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ 2 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √\n",
|
||
"────────── + ────────── + ──────────── ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢- ── + ─\n",
|
||
" 8 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢- ─ + ─⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ 2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2\n",
|
||
"⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ── - ──\n",
|
||
"⎝ 2 2⎠ √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4\n",
|
||
"───────── + ─────────── - ──────────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4 8 4 ⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √\n",
|
||
" ⎥ ⎢- ── - ────⎥ ⎢- ── + ─\n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎣ 4 \n",
|
||
" √2⋅⎜- ─ + ─⎟⎥ \n",
|
||
"⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ \n",
|
||
"─────────── - ─────────── + ────────────⎥ \n",
|
||
" 8 8 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
"── ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ \n",
|
||
" ⎥ ⎡ 1 ⅈ ⎤ ⎡1/2 ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎡ \n",
|
||
" ⎥ ⎢ ─ - ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"2⋅ⅈ⎥ ⎢ 2 2 ⎥ ⎢-1/2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎡1/2 ⎤ ⎢ 0 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ \n",
|
||
"───⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
"4 ⎥ ⎢ 1 ⅈ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢-1/2⎥ ⎢ 1 ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 1 \n",
|
||
" ⎥, ⎢- ─ + ─⎥, ⎢─── ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ─ - ─ ⎥, ⎢ ⎥, ⎢ ─ \n",
|
||
"⋅ⅈ ⎥ ⎢ 2 2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢1/2 ⎥ ⎢ 2 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 \n",
|
||
"── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ \n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎣-1/2⎦ ⎢ 1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 1\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢ ⎥ ⎢- ─\n",
|
||
"2⋅ⅈ⎥ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 2⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2\n",
|
||
"───⎥ ⎢ ── - ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
"4 ⎦ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠\n",
|
||
" ⎢- ──────────── + ────────── - ──────────── + ──────────\n",
|
||
" ⎡-ⅈ ⎤ ⎢ 4 4 4 4 \n",
|
||
" ⎢───⎥ ⎢ \n",
|
||
"0 ⎤ ⎡-ⅈ ⎤ ⎢ 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟\n",
|
||
"0 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢- ────────── - ────────── + ──────────── + ────────────\n",
|
||
" ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 4 4 4 4 \n",
|
||
"+ ─ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟\n",
|
||
" ⅈ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠\n",
|
||
" - ─⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ──────────── + ────────── - ──────────── + ──────────\n",
|
||
" 2⎦ ⎣-1/2⎦ ⎢-ⅈ ⎥ ⎢ 4 4 4 4 \n",
|
||
" ⎢───⎥ ⎢ \n",
|
||
" ⎣ 2 ⎦ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ⎢ √2⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠\n",
|
||
" ⎢- ────────── - ────────── + ──────────── + ────────────\n",
|
||
" ⎣ 4 4 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎤ ⎡ ⎛1 ⅈ⎞ \n",
|
||
"⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅\n",
|
||
"⎥ ⎢ ⎝2 2⎠ \n",
|
||
"⎥ ⎢ - ──────────── + ───\n",
|
||
"⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 \n",
|
||
"⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ ⎢ \n",
|
||
"⎥ ⎡ 1 ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ 1 ⅈ ⎤ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1\n",
|
||
"⎥ ⎢ ─ - ─ ⎥ ⎢ ⎥ ⎢ ─ - ─ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅⎜─\n",
|
||
"⎥ ⎢ 2 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎝2 2⎠ ⎝2\n",
|
||
"⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ - ────────── - ─────\n",
|
||
"⎥ ⎢ 1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 4 4\n",
|
||
"⎥, ⎢- ─ + ─⎥, ⎢ ⎥, ⎢- ─ + ─⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎥ ⎢ 2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ \n",
|
||
"⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜-\n",
|
||
"⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ ⎝2 2⎠ ⎝ \n",
|
||
"⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ──────────── + ─────\n",
|
||
"⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ 4 \n",
|
||
"⎥ ⎢- ── + ────⎥ ⎢- ── - ────⎥ ⎢ \n",
|
||
"⎥ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎢ ⎛1 ⅈ⎞ ⎛ \n",
|
||
"⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜-\n",
|
||
"⎥ ⎢ ⎝2 2⎠ ⎝ \n",
|
||
"⎥ ⎢- ────────── + ───────\n",
|
||
"⎦ ⎣ 4 4\n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞\n",
|
||
"⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟\n",
|
||
"⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠\n",
|
||
"─────── - ──────────── + ────────── ⎥ ⎢- ────────────\n",
|
||
" 4 4 4 ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎢ ⎛ 1 ⅈ\n",
|
||
" - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎡1/2 ⎤ ⎢ ⎝ 2 2\n",
|
||
"───── + ──────────── + ──────────── ⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢ ─────────────\n",
|
||
" 4 4 ⎥ ⎢ 4 4 ⎥ ⎢-1/2⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢ \n",
|
||
" ─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ 4 4 ⎥ ⎣1/2 ⎦ ⎢ \n",
|
||
"─────── + ────────── - ──────────────⎥ ⎢ ⎥ ⎢ \n",
|
||
"4 4 4 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ \n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎢ \n",
|
||
" ─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢ \n",
|
||
" 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
"─────── - ──────────── + ────────────⎥ ⎢ \n",
|
||
" 4 4 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ ⎡ \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠⎥ ⎢ \n",
|
||
" + ────────── + ──────────── - ──────────────⎥ ⎢ - \n",
|
||
" 4 4 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎢ \n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
"⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎢ \n",
|
||
"⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎢ \n",
|
||
"─ - ──────────── - ────────── + ──────────── ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ - \n",
|
||
" 4 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢- ─ - ─⎥, ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2⎥ ⎢ \n",
|
||
" √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ ⎥ ⎢√2⋅\n",
|
||
" ──────────── - ────────────── ⎥ ⎢ ⎥ ⎢ ─ + ─ ⎥ ⎢───\n",
|
||
" 2 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 2 ⎦ ⎢ \n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎣ 4 4 ⎦ ⎢ \n",
|
||
" √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢√2⋅\n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ────────────── - ──────────── ⎥ ⎢───\n",
|
||
" 2 2 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
"√2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎝2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎥ \n",
|
||
"──────────── + ───────────── + ────────── + ─────────── ⎥ \n",
|
||
" 4 8 4 8 ⎥ ⎡ ⎛1 ⅈ⎞ ⎛1\n",
|
||
" ⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─\n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝2 2⎠ ⎝2\n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢────────── + ─────\n",
|
||
"√2⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ 2 2\n",
|
||
"─────────── - ────────── - ───────────── + ──────────── ⎥ ⎢ \n",
|
||
" 8 4 8 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1\n",
|
||
" ⎥, ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─\n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎝2 2⎠ ⎝2\n",
|
||
" √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢────────── + ─────\n",
|
||
"ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ 2 2\n",
|
||
"────────── + ──────────── + ─────────── - ──────────────⎥ ⎢ \n",
|
||
" 8 4 8 4 ⎥ ⎢ 0 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎣ 0 \n",
|
||
"ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠ √2⋅(-1 + ⅈ) √2⋅ⅈ⋅(-1 + ⅈ)⎥ \n",
|
||
"─────────── - ──────────── - ─────────── - ─────────────⎥ \n",
|
||
" 4 4 8 8 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ\n",
|
||
" ⎢ √2⋅⎜─ - ─\n",
|
||
" ⎢ ⎝2 2\n",
|
||
" ⎢ ─────────\n",
|
||
" ⅈ⎞⎤ ⎡ 1/2 ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎢ 4 \n",
|
||
" + ─⎟⎥ ⎢ ⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ \n",
|
||
" 2⎠⎥ ⎢ 1/2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛1 ⅈ\n",
|
||
"─────⎥ ⎢ ⎥ ⎢────────── + ──────────⎥ ⎢ √2⋅⎜─ - ─\n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡1/2⎤ ⎢ 2 2 ⎥ ⎢ ⎝2 2\n",
|
||
" ⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─────────\n",
|
||
" ⅈ⎞⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢1/2⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 4 \n",
|
||
" + ─⎟⎥, ⎢───────── + ─────────⎥, ⎢ ⎥, ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥, ⎢ \n",
|
||
" 2⎠⎥ ⎢ 2 2 ⎥ ⎢1/2⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛1 \n",
|
||
"─────⎥ ⎢ ⎥ ⎢ ⎥ ⎢────────── + ──────────⎥ ⎢ √2⋅ⅈ⋅⎜─ \n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣1/2⎦ ⎢ 2 2 ⎥ ⎢ ⎝2 \n",
|
||
" ⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢- ────────\n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 0 ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢───────── + ─────────⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎦ ⎣ 2 2 ⎦ ⎣ 0 ⎦ ⎢ ⎛1 \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ \n",
|
||
" ⎢ ⎝2 \n",
|
||
" ⎢- ────────\n",
|
||
" ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
"⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ \n",
|
||
"⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 \n",
|
||
"─ + ──────────── + ────────── + ──────────── ⎥ ⎢────────── + ────────\n",
|
||
" 4 4 4 ⎥ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
"⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
"⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ \n",
|
||
"⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎡1/2 ⎤ ⎢ ⎝2 2⎠ ⎝2 \n",
|
||
"─ + ──────────── + ────────── + ──────────── ⎥ ⎢ ⎥ ⎢────────── + ────────\n",
|
||
" 4 4 4 ⎥ ⎢1/2 ⎥ ⎢ 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢-1/2⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
"- ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎣-1/2⎦ ⎢ ⎝2 2⎠ ⎝2 \n",
|
||
"──── + ────────── - ──────────── + ──────────⎥ ⎢────────── + ────────\n",
|
||
" 4 4 4 ⎥ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
"- ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝2 \n",
|
||
"──── + ────────── - ──────────── + ──────────⎥ ⎢────────── + ────────\n",
|
||
" 4 4 4 ⎦ ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
"+ ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"──── + ────────── + ────────────⎥ \n",
|
||
" 4 4 ⎥ ⎡ 0 ⎤ ⎡ 1/2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 0 ⎥ ⎢ 1/2 \n",
|
||
"+ ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
"──── + ────────── + ────────────⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ\n",
|
||
" 4 4 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ \n",
|
||
" ⎥, ⎢────────── + ──────────⎥, ⎢- ───────── - ─\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 2 2 ⎥ ⎢ 2 \n",
|
||
"+ ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
"──── + ────────── + ────────────⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ\n",
|
||
" 4 4 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ \n",
|
||
" ⎥ ⎢────────── + ──────────⎥ ⎢- ───────── - ─\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣ 2 2 ⎦ ⎣ 2 \n",
|
||
"+ ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"──── + ────────── + ────────────⎥ \n",
|
||
" 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎢- ──────────── + ────────── - ─────\n",
|
||
" ⎤ ⎡ 0 ⎤ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅\n",
|
||
" ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"⋅⎜─ + ─⎟⎥ ⎢√2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢- ──────────── + ────────── - ─────\n",
|
||
" ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 4 4 \n",
|
||
"────────⎥, ⎢──────────── + ────────────⎥, ⎢ \n",
|
||
" 2 ⎥ ⎢ 2 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ \n",
|
||
" ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
"⋅⎜─ + ─⎟⎥ ⎢√2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ ────────── + ──────────── + ──────\n",
|
||
" ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 4 4 4 \n",
|
||
"────────⎥ ⎢──────────── + ────────────⎥ ⎢ \n",
|
||
" 2 ⎦ ⎣ 2 2 ⎦ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
" ⎢ ────────── + ──────────── + ──────\n",
|
||
" ⎣ 4 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
"⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─\n",
|
||
"⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2\n",
|
||
"─────── + ──────────⎥ ⎢- ──────────── + ────────── - ──────────── + ─────────\n",
|
||
"4 4 ⎥ ⎢ 4 4 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
"⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
"⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─\n",
|
||
"⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2\n",
|
||
"─────── + ──────────⎥ ⎢- ──────────── + ────────── - ──────────── + ─────────\n",
|
||
"4 4 ⎥ ⎢ 4 4 4 4 \n",
|
||
" ⎥, ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
"+ ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─\n",
|
||
" 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2\n",
|
||
"──── + ──────────── ⎥ ⎢- ────────── - ────────── + ──────────── + ───────────\n",
|
||
" 4 ⎥ ⎢ 4 4 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
"+ ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─\n",
|
||
" 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2\n",
|
||
"──── + ──────────── ⎥ ⎢- ────────── - ────────── + ──────────── + ───────────\n",
|
||
" 4 ⎦ ⎣ 4 4 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" ⎡ 2 2⎤ \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"⎞⎤ ⎢ ⎜─ - ─⎟ ⎜─ + ─⎟ ⎥ \n",
|
||
"⎟⎥ ⎢⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"⎠⎥ ⎢⎜─ - ─⎟⋅⎜─ + ─⎟ + ──────── + ────────⎥ \n",
|
||
"─⎥ ⎢⎝2 2⎠ ⎝2 2⎠ 2 2 ⎥ \n",
|
||
" ⎥ ⎢ ⎥ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
" ⎥ ⎢ 2 2⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ \n",
|
||
"⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"⎟⎥ ⎢ ⎜─ - ─⎟ ⎜─ + ─⎟ ⎥ ⎢────────── + ──────────⎥ \n",
|
||
"⎠⎥ ⎢⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ 2 2 ⎥ ⎡1/2⎤ \n",
|
||
"─⎥ ⎢⎜─ - ─⎟⋅⎜─ + ─⎟ + ──────── + ────────⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎥ ⎢⎝2 2⎠ ⎝2 2⎠ 2 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢1/2⎥ \n",
|
||
" ⎥, ⎢ ⎥, ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥, ⎢ ⎥,\n",
|
||
"⎞⎥ ⎢ 2 2⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢1/2⎥ \n",
|
||
"⎟⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢────────── + ──────────⎥ ⎢ ⎥ \n",
|
||
"⎠⎥ ⎢ ⎜─ - ─⎟ ⎜─ + ─⎟ ⎥ ⎢ 2 2 ⎥ ⎣1/2⎦ \n",
|
||
"─⎥ ⎢⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎥ \n",
|
||
" ⎥ ⎢⎜─ - ─⎟⋅⎜─ + ─⎟ + ──────── + ────────⎥ ⎢ 0 ⎥ \n",
|
||
" ⎥ ⎢⎝2 2⎠ ⎝2 2⎠ 2 2 ⎥ ⎢ ⎥ \n",
|
||
"⎞⎥ ⎢ ⎥ ⎣ 0 ⎦ \n",
|
||
"⎟⎥ ⎢ 2 2⎥ \n",
|
||
"⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"─⎥ ⎢ ⎜─ - ─⎟ ⎜─ + ─⎟ ⎥ \n",
|
||
" ⎦ ⎢⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
" ⎢⎜─ - ─⎟⋅⎜─ + ─⎟ + ──────── + ────────⎥ \n",
|
||
" ⎣⎝2 2⎠ ⎝2 2⎠ 2 2 ⎦ \n",
|
||
"\n",
|
||
" ⎡ \n",
|
||
" ⎢ \n",
|
||
" ⎢ \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1\n",
|
||
" ⎢ ⎜─ - ─⎟⋅⎜─\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2\n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎡ 1/2 ⎤ ⎢ \n",
|
||
" ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 1/2 ⎥ ⎢ \n",
|
||
" ⎢────────── + ──────────⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ 2 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1\n",
|
||
" ⎢ ⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎜─ - ─⎟⋅⎜─\n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝2\n",
|
||
" ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥, ⎢───────── + ─────────⎥, ⎢ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
" ⎢────────── + ──────────⎥ ⎢ ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⎢ 2 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ -\n",
|
||
" ⎢ ⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
" ⎢ 0 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢───────────────── + ────\n",
|
||
" ⎢ ⎥ ⎢───────── + ─────────⎥ ⎢ 2 \n",
|
||
" ⎣ 0 ⎦ ⎣ 2 2 ⎦ ⎢ \n",
|
||
" ⎢ \n",
|
||
" ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ -\n",
|
||
" ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
" ⎢───────────────── + ────\n",
|
||
" ⎣ 2 \n",
|
||
"\n",
|
||
" 2 2 ⎤ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
" ⎜─ - ─⎟ ⎜─ + ─⎟ ⎥ ⎡ ⎛1 \n",
|
||
" ⅈ⎞ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2⋅⎜─ \n",
|
||
" + ─⎟ + ──────── + ──────── ⎥ ⎢ ⎝2 \n",
|
||
" 2⎠ 2 2 ⎥ ⎢ ──────\n",
|
||
" ⎥ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎢ 4 \n",
|
||
" 2 2 ⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛1 \n",
|
||
" ⎜─ - ─⎟ ⎜─ + ─⎟ ⎥ ⎢───────── + ─────────⎥ ⎢ √2⋅⎜─ \n",
|
||
" ⅈ⎞ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ 2 2 ⎥ ⎢ ⎝2 \n",
|
||
" + ─⎟ + ──────── + ──────── ⎥ ⎢ ⎥ ⎢ ──────\n",
|
||
" 2⎠ 2 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥, ⎢ \n",
|
||
" 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛1\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢───────── + ─────────⎥ ⎢ √2⋅⎜─\n",
|
||
" ─⎟⋅⎜─ + ─⎟ ⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ 2 2 ⎥ ⎢ ⎝2\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⎥ ⎢- ─────\n",
|
||
"─────────── + ──────── + ─────────────────⎥ ⎢ 1/2 ⎥ ⎢ 4\n",
|
||
" 2 2 2 ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎣ 1/2 ⎦ ⎢ ⎛1\n",
|
||
" 2 ⎥ ⎢ √2⋅⎜─\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎝2\n",
|
||
" ─⎟⋅⎜─ + ─⎟ ⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢- ─────\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎣ 4\n",
|
||
"─────────── + ──────── + ─────────────────⎥ \n",
|
||
" 2 2 2 ⎦ \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
"- ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎡ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
"──── + ──────────── + ────────── + ──────────── ⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─\n",
|
||
" 4 4 4 ⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2\n",
|
||
" ⎥ ⎢───────────────── + ──────\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 2 \n",
|
||
"- ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"──── + ──────────── + ────────── + ──────────── ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
" 4 4 4 ⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─\n",
|
||
" ⎥, ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢───────────────── + ──────\n",
|
||
" + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟⎥ ⎢ 2 \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
"───── - ──────────── - ──────────── - ──────────⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1\n",
|
||
" 4 4 4 ⎥ ⎢ ⎜- ─ + ─⎟⋅⎜─\n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎝2\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
" + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎜- ─ + ─⎟⋅⎜─\n",
|
||
"───── - ──────────── - ──────────── - ──────────⎥ ⎣ ⎝ 2 2⎠ ⎝2\n",
|
||
" 4 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
"⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ \n",
|
||
"⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ \n",
|
||
"⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎡ 0 \n",
|
||
"───────── + ──────── + ─────────────────⎥ ⎢ \n",
|
||
" 2 2 2 ⎥ ⎢ 0 \n",
|
||
" ⎥ ⎢ \n",
|
||
" 2 ⎥ ⎡-1/2⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
"⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ +\n",
|
||
"⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢-1/2⎥ ⎢ ⎝2 2⎠ ⎝2 \n",
|
||
"⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥, ⎢ ⎥, ⎢- ──────────── - ─────────\n",
|
||
"───────── + ──────── + ─────────────────⎥ ⎢1/2 ⎥ ⎢ 2 2 \n",
|
||
" 2 2 2 ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎣1/2 ⎦ ⎢ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ +\n",
|
||
" + ─⎟ + ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ ⎝2 2⎠ ⎝2 \n",
|
||
" 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢- ──────────── - ─────────\n",
|
||
" ⎥ ⎣ 2 2 \n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
" + ─⎟ + ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ \n",
|
||
" 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎡ 2 \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
" ⎢ ────────────────── + ─────────────── + ──────── + ────────────────\n",
|
||
" ⎤ ⎢ 4 2 2 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⅈ⎞⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + \n",
|
||
" ─⎟⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
" 2⎠⎥ ⎢ ────────────────── + ─────────────── + ──────── + ────────────────\n",
|
||
"───⎥, ⎢ 4 2 2 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞\n",
|
||
" ⅈ⎞⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎜- ─ + ─⎟\n",
|
||
" ─⎟⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠\n",
|
||
" 2⎠⎥ ⎢───────────────── + ────────────────── + ────────────────── + ─────────\n",
|
||
"───⎥ ⎢ 2 4 4 2\n",
|
||
" ⎦ ⎢ \n",
|
||
" ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞\n",
|
||
" ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎜- ─ + ─⎟\n",
|
||
" ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠\n",
|
||
" ⎢───────────────── + ────────────────── + ────────────────── + ─────────\n",
|
||
" ⎣ 2 4 4 2\n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎤ \n",
|
||
"ⅈ⎞ ⎥ \n",
|
||
"─⎟ ⎥ \n",
|
||
"2⎠ ⎥ \n",
|
||
"── ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ ⎡ √2 ⎤ ⎡√2⎤ ⎡1 ⅈ⎤ ⎡ √2 ⎤ ⎡1 ⅈ⎤ ⎡ √2 ⎤ \n",
|
||
"ⅈ⎞ ⎥ ⎢ ── ⎥ ⎢──⎥ ⎢─ + ─⎥ ⎢ ── ⎥ ⎢─ + ─⎥ ⎢ ── ⎥ \n",
|
||
"─⎟ ⎥ ⎡1⎤ ⎢ 2 ⎥ ⎢2 ⎥ ⎡1⎤ ⎢2 2⎥ ⎢ 2 ⎥ ⎢2 2⎥ ⎡0⎤ ⎢ 2 ⎥ ⎡0\n",
|
||
"2⎠ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"── ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢0\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢0⎥ ⎢√2⋅ⅈ⎥ ⎢√2⎥ ⎢0⎥ ⎢1 ⅈ⎥ ⎢-√2 ⎥ ⎢1 ⅈ⎥ ⎢1⎥ ⎢-√2⋅ⅈ ⎥ ⎢ⅈ\n",
|
||
" ⎛1 ⅈ⎞⎥ ⎢ ⎥ ⎢────⎥ ⎢──⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢────⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢──────⎥ ⎢ \n",
|
||
"⋅⎜─ - ─⎟⎥ ⎣0⎦ ⎢ 2 ⎥ ⎢2 ⎥ ⎣0⎦ ⎢2 2⎥ ⎢ 2 ⎥ ⎢2 2⎥ ⎣0⎦ ⎢ 2 ⎥ ⎣0\n",
|
||
" ⎝2 2⎠⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
"────────⎥ ⎣ 0 ⎦ ⎣0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎛1 ⅈ⎞⎥ \n",
|
||
"⋅⎜─ - ─⎟⎥ \n",
|
||
" ⎝2 2⎠⎥ \n",
|
||
"────────⎥ \n",
|
||
" ⎦ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎡ \n",
|
||
" ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ √2\n",
|
||
" ⎡1 ⅈ⎤ ⎡ 1 ⅈ ⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎡√2⎤ ⎡ √2 ⎤ ⎢ \n",
|
||
" ⎢─ - ─⎥ ⎢ ─ - ─ ⎥ ⎢────────── + ──────────⎥ ⎢──⎥ ⎢ ── ⎥ ⎢ ──\n",
|
||
"⎤ ⎢2 2⎥ ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ ⎡1⎤ ⎢2 ⎥ ⎡1⎤ ⎢ 2 ⎥ ⎢ \n",
|
||
"⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ \n",
|
||
"⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎥ ⎢1 ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢0⎥ ⎢√2⎥ ⎢0⎥ ⎢√2⋅ⅈ⎥ ⎢ \n",
|
||
"⎥ ⎢─ + ─⎥ ⎢- ─ + ─⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥ ⎢────⎥ ⎢√2⋅\n",
|
||
"⎦ ⎢2 2⎥ ⎢ 2 2⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎣0⎦ ⎢2 ⎥ ⎣0⎦ ⎢ 2 ⎥ ⎢ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢────────── + ──────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢───\n",
|
||
" ⎣ 0 ⎦ ⎣ 0 ⎦ ⎢ 2 2 ⎥ ⎣0 ⎦ ⎣ 0 ⎦ ⎢ \n",
|
||
" ⎢ ⎥ ⎢ \n",
|
||
" ⎣ 0 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
"⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎡√2⋅ⅈ⎤ ⎡ 1 ⅈ ⎤ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟⎥ ⎡-√2 \n",
|
||
"──────── + ────────── ⎥ ⎢────⎥ ⎢ ─ + ─ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢────\n",
|
||
" 2 2 ⎥ ⎢ 2 ⎥ ⎢ 2 2 ⎥ ⎢────────── + ────────────⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
" 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ 0 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ 0 ⎥, ⎢ \n",
|
||
"⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ √2 ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎥ ⎢ √2 \n",
|
||
"⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ── ⎥ ⎢- ─ - ─⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ ── \n",
|
||
"⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢ 2 2⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ 2 \n",
|
||
"───────── + ──────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" 2 2 ⎥ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎢ ⎥ ⎣ 0 \n",
|
||
" ⎥ ⎣ 0 ⎦ \n",
|
||
" 0 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ ⎡√2 √2⋅ⅈ⎤\n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢── + ────⎥\n",
|
||
"⎤ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎡√2⎤ ⎡1/2⎤ ⎡√2⎤ ⎢4 4 ⎥\n",
|
||
"⎥ ⎢ ───────────── + ────────── ⎥ ⎢──⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥\n",
|
||
"⎥ ⎡0 ⎤ ⎢ 4 2 ⎥ ⎢2 ⎥ ⎢1/2⎥ ⎡1/2⎤ ⎢2 ⎥ ⎢√2 √2⋅ⅈ⎥\n",
|
||
"⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢── + ────⎥\n",
|
||
"⎥ ⎢0 ⎥ ⎢ 0 ⎥ ⎢√2⎥ ⎢ ⅈ ⎥ ⎢1/2⎥ ⎢√2⎥ ⎢4 4 ⎥\n",
|
||
"⎥, ⎢ ⎥, ⎢ ⎥, ⎢──⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢──⎥, ⎢ ⎥\n",
|
||
"⎥ ⎢-ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢2 ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢2 ⎥ ⎢√2 √2⋅ⅈ⎥\n",
|
||
"⎥ ⎢ ⎥ ⎢ √2⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢── - ────⎥\n",
|
||
"⎥ ⎣0 ⎦ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢0 ⎥ ⎢ ⅈ ⎥ ⎣1/2⎦ ⎢0 ⎥ ⎢4 4 ⎥\n",
|
||
"⎥ ⎢───────────── + ────────────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
"⎦ ⎢ 4 2 ⎥ ⎣0 ⎦ ⎣ 2 ⎦ ⎣0 ⎦ ⎢√2 √2⋅ⅈ⎥\n",
|
||
" ⎢ ⎥ ⎢── - ────⎥\n",
|
||
" ⎣ 0 ⎦ ⎣4 4 ⎦\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡√2 √2⋅ⅈ⎤ ⎡√2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢── + ────⎥ ⎢── - ────⎥ ⎢ ── - ──── ⎥ \n",
|
||
" ⎢4 4 ⎥ ⎡0 ⎤ ⎡1/2⎤ ⎡ 0 ⎤ ⎢4 4 ⎥ ⎢ 4 4 ⎥ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎡1/2 ⎤ ⎢√2 √2⋅ⅈ⎥ ⎢0 ⎥ ⎢1/2⎥ ⎢ 0 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎡1/2⎤ \n",
|
||
" ⎢ ⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢── - ────⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ \n",
|
||
" ⎢1/2 ⎥ ⎢4 4 ⎥ ⎢√2⎥ ⎢-ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎢1/2⎥ \n",
|
||
", ⎢ ⎥, ⎢ ⎥, ⎢──⎥, ⎢───⎥, ⎢────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥,\n",
|
||
" ⎢-1/2⎥ ⎢√2 √2⋅ⅈ⎥ ⎢2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢1/2⎥ \n",
|
||
" ⎢ ⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢── + ────⎥ ⎢- ── + ────⎥ ⎢ ⎥ \n",
|
||
" ⎣-1/2⎦ ⎢4 4 ⎥ ⎢√2⎥ ⎢-ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎣1/2⎦ \n",
|
||
" ⎢ ⎥ ⎢──⎥ ⎢───⎥ ⎢────⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎢√2 √2⋅ⅈ⎥ ⎣2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ \n",
|
||
" ⎢── + ────⎥ ⎢── + ────⎥ ⎢- ── + ────⎥ \n",
|
||
" ⎣4 4 ⎦ ⎣4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢ ── + ──── ⎥ \n",
|
||
" ⎡√2⎤ ⎡√2⎤ ⎡1/2⎤ ⎡1/2⎤ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡ \n",
|
||
" ⎢──⎥ ⎢──⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢2 ⎥ ⎡1/2⎤ ⎢2 ⎥ ⎢1/2⎥ ⎢1/2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎡-1/2⎤ ⎢ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢√2⎥ ⎢1/2⎥ ⎢√2⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢-1/2⎥ ⎢-√\n",
|
||
" ⎢──⎥, ⎢ ⎥, ⎢──⎥, ⎢ ─ ⎥, ⎢ ─ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢- ─ + ─⎥, ⎢ ⎥, ⎢──\n",
|
||
" ⎢2 ⎥ ⎢1/2⎥ ⎢2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 2⎥ ⎢1/2 ⎥ ⎢ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢0 ⎥ ⎣1/2⎦ ⎢0 ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢1/2⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎣1/2 ⎦ ⎢-√\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢──\n",
|
||
" ⎣0 ⎦ ⎣0 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣1/2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 2⎦ ⎣ \n",
|
||
" ⎢- ── - ────⎥ \n",
|
||
" ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ \n",
|
||
" ⎢ ─ + ────────── - ─ ⎥ \n",
|
||
"0 ⎤ ⎢ 4 4 4 ⎥ ⎡ √2 ⎤ ⎡√2⎤ ⎡1 ⅈ⎤ ⎡ √2 ⎤ ⎡1 ⅈ\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢──⎥ ⎢─ + ─⎥ ⎢ ── ⎥ ⎢─ + ─\n",
|
||
"0 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎡1⎤ ⎢ 2 ⎥ ⎢2 ⎥ ⎡1⎤ ⎢2 2⎥ ⎢ 2 ⎥ ⎢2 2\n",
|
||
" ⎥ ⎢ ─ + ────────── - ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"2⋅ⅈ ⎥ ⎢ 4 4 4 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 \n",
|
||
"────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"2 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢0⎥ ⎢√2⋅ⅈ⎥ ⎢√2⎥ ⎢0⎥ ⎢1 ⅈ⎥ ⎢-√2 ⎥ ⎢1 ⅈ\n",
|
||
" ⎥ ⎢- ─ + ────────── + ─⎥ ⎢ ⎥ ⎢────⎥ ⎢──⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢────⎥ ⎢─ + ─\n",
|
||
"2⋅ⅈ ⎥ ⎢ 4 4 4⎥ ⎣0⎦ ⎢ 2 ⎥ ⎢2 ⎥ ⎣0⎦ ⎢2 2⎥ ⎢ 2 ⎥ ⎢2 2\n",
|
||
"────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"2 ⎦ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎣ 0 ⎦ ⎣0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 0 \n",
|
||
" ⎢- ─ + ────────── + ─⎥ \n",
|
||
" ⎣ 4 4 4⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
" ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ \n",
|
||
"⎤ ⎡ √2 ⎤ ⎡1 ⅈ⎤ ⎡ 1 ⅈ ⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎡√2\n",
|
||
"⎥ ⎢ ── ⎥ ⎢─ - ─⎥ ⎢ ─ - ─ ⎥ ⎢────────── + ──────────⎥ ⎢──\n",
|
||
"⎥ ⎡0⎤ ⎢ 2 ⎥ ⎡0⎤ ⎢2 2⎥ ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ ⎡1⎤ ⎢2 \n",
|
||
"⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢0 \n",
|
||
"⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎥ ⎢1⎥ ⎢-√2⋅ⅈ ⎥ ⎢ⅈ⎥ ⎢1 ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢0⎥ ⎢√2\n",
|
||
"⎥ ⎢ ⎥ ⎢──────⎥ ⎢ ⎥ ⎢─ + ─⎥ ⎢- ─ + ─⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢──\n",
|
||
"⎥ ⎣0⎦ ⎢ 2 ⎥ ⎣0⎦ ⎢2 2⎥ ⎢ 2 2⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎣0⎦ ⎢2 \n",
|
||
"⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢────────── + ──────────⎥ ⎢ \n",
|
||
"⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎢ 2 2 ⎥ ⎣0 \n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎣ 0 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎡ ⎛1 ⅈ⎞ \n",
|
||
"⎤ ⎡ √2 ⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎡√2⋅ⅈ⎤ ⎡ 1 ⅈ ⎤ ⎢√2⋅⎜─ - ─⎟ \n",
|
||
"⎥ ⎢ ── ⎥ ⎢ ────────── + ────────── ⎥ ⎢────⎥ ⎢ ─ + ─ ⎥ ⎢ ⎝2 2⎠ \n",
|
||
"⎥ ⎡1⎤ ⎢ 2 ⎥ ⎢ 2 2 ⎥ ⎢ 2 ⎥ ⎢ 2 2 ⎥ ⎢────────── + \n",
|
||
"⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 2 \n",
|
||
"⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ \n",
|
||
"⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ 0\n",
|
||
"⎥ ⎢0⎥ ⎢√2⋅ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ √2 ⎥ ⎢ 1 ⅈ⎥ ⎢ \n",
|
||
"⎥ ⎢ ⎥ ⎢────⎥ ⎢√2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ── ⎥ ⎢- ─ - ─⎥ ⎢ ⎛ 1\n",
|
||
"⎥ ⎣0⎦ ⎢ 2 ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢ 2 2⎥ ⎢ √2⋅⎜- ─\n",
|
||
"⎥ ⎢ ⎥ ⎢──────────── + ──────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎝ 2\n",
|
||
"⎦ ⎣ 0 ⎦ ⎢ 2 2 ⎥ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎢ \n",
|
||
" ⎢ ⎥ ⎣ 0\n",
|
||
" ⎣ 0 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎛ 1 ⅈ⎞⎤ ⎢ √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
"√2⋅⎜- ─ + ─⎟⎥ ⎡-√2 ⎤ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎡ √2 ⎤ ⎡1/2 ⎤ ⎡\n",
|
||
" ⎝ 2 2⎠⎥ ⎢────⎥ ⎢ ───────────── + ────────── ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢\n",
|
||
"────────────⎥ ⎢ 2 ⎥ ⎡0 ⎤ ⎢ 4 2 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢\n",
|
||
" 2 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢\n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢ 0 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢────⎥, ⎢ ⎥, ⎢\n",
|
||
" ⎥ ⎢ √2 ⎥ ⎢-ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢\n",
|
||
" ⅈ⎞ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ √2⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢\n",
|
||
" + ─⎟ ⎥ ⎢ 2 ⎥ ⎣0 ⎦ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢\n",
|
||
" 2⎠ ⎥ ⎢ ⎥ ⎢───────────── + ────────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎥ ⎣ 0 ⎦ ⎢ 4 2 ⎥ ⎣ 0 ⎦ ⎣-1/2⎦ ⎣\n",
|
||
" ⎦ ⎢ ⎥ \n",
|
||
" ⎣ 0 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √\n",
|
||
" ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ ⎢ ─\n",
|
||
"1/2⎤ ⎡ √2 ⎤ ⎢ 4 4 ⎥ ⎡1/2 ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡1/2⎤ ⎡ 0 ⎤ ⎢ 4\n",
|
||
" ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ √\n",
|
||
" ─ ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ ─ ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ─\n",
|
||
" 2 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ √2 ⎥ ⎢ 2 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 4\n",
|
||
" ⎥, ⎢────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ── ⎥, ⎢ ⎥, ⎢────⎥, ⎢ \n",
|
||
"1/2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ √\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢───⎥ ⎢ ⎥ ⎢ ─\n",
|
||
" ⅈ ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢-√2 ⎥ ⎢ 4\n",
|
||
" ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢────⎥ ⎢ ⎥ ⎢────⎥ ⎢ \n",
|
||
" 2 ⎦ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 ⎦ ⎣1/2⎦ ⎣ 2 ⎦ ⎢ \n",
|
||
" ⎢ ── + ──── ⎥ ⎢- ── + ────⎥ ⎢- \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ 1/2 ⎤ \n",
|
||
"─ - ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ \n",
|
||
" 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡ √2 ⎤ ⎡1/2⎤ ⎡ √2 ⎤ ⎡1/\n",
|
||
" ⎥ ⎢ ⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ \n",
|
||
"2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⅈ\n",
|
||
"─ + ──── ⎥ ⎢ ── + ──── ⎥ ⎢───────── + ─────────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ─\n",
|
||
" 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 2 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢────⎥, ⎢ ⎥, ⎢────⎥, ⎢ \n",
|
||
"2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1/2 ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢ 2 ⎥ ⎢ ⅈ\n",
|
||
"─ + ──── ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─\n",
|
||
" 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ 2\n",
|
||
" ⎥ ⎢ ⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎣-1\n",
|
||
"── + ────⎥ ⎢- ── - ────⎥ ⎢───────── + ─────────⎥ \n",
|
||
"4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1/2 ⎤ \n",
|
||
" ⎢ ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎡ 0 \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
"2 ⎤ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟ ⎥ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ - ─\n",
|
||
" ⎥ ⎢ ───────── + ───────── ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2\n",
|
||
" ⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢─────────── + ────────\n",
|
||
" ⎥ ⎢ ⎥ ⎢-1/2⎥ ⎢ 4 4 ⎥ ⎢ 2 2 \n",
|
||
" ⎥, ⎢ ⅈ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢1/2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1 ⅈ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ - ─ + ─ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 2 2 \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"/2⎦ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ── - ──── ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎢─────────── + ─────────⎥ ⎣ 4 4 ⎦ ⎣ ⎝ 2 2⎠ \n",
|
||
" ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ \n",
|
||
" ⎢ ─ + ────────── - ─ ⎥ ⎡ \n",
|
||
" ⎤ ⎢ 4 4 4 ⎥ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ \n",
|
||
"⎞⎥ ⎡-1/2⎤ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ────────── + ────────── ⎥ ⎢ \n",
|
||
"⎠⎥ ⎢-ⅈ ⎥ ⎢ 0 ⎥ ⎢ 1 ⅈ ⎝2 2⎠ ⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
"─⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ─ - ─ + ───────── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 4 4 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⅈ\n",
|
||
" ⎥, ⎢ ⎥, ⎢──────⎥, ⎢ ⎥, ⎢√2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥, ⎢ \n",
|
||
" ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ─\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ────────── + ─⎥ ⎢──────────── + ──────────⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⅈ ⎥ ⎢ √2 ⎥ ⎢ 4 4 4⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 0 ⎥ ⎢ⅈ⋅\n",
|
||
" ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎦ ⎢1 ⎝ 2 2⎠ ⅈ ⎥ ⎣ 0 ⎦ ⎢──\n",
|
||
" ⎢─ + ─────────── - ─ ⎥ ⎣ \n",
|
||
" ⎣4 2 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √\n",
|
||
" ⎢ ⎝2 2⎠ \n",
|
||
" 1/2 ⎤ ⎢ ────────── + ─\n",
|
||
" ⎥ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎢ 4 \n",
|
||
" ⅈ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ \n",
|
||
" ─ ⎥ ⎡1/2⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" 2 ⎥ ⎢ ⎥ ⎢ ────────── + ────────── ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎥ ⎢ ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ────────────── +\n",
|
||
"⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 4 \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥, ⎢ ⎥, ⎢√2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥, ⎢ \n",
|
||
"──────── + ───────── ⎥ ⎢1/2⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" 2 2 ⎥ ⎢ ⎥ ⎢──────────── + ──────────⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ \n",
|
||
" ⎥ ⎢ ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ ⎝2 2⎠ \n",
|
||
"⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ - ──────────── \n",
|
||
"⎜- ─ + ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎣ 2 ⎦ ⎢ 0 ⎥ ⎢ 4 \n",
|
||
"⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⎥ ⎢ \n",
|
||
"───────── + ─────────⎥ ⎣ 0 ⎦ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" 2 2 ⎦ ⎢ √2⋅ⅈ⋅⎜─ + ─⎟ \n",
|
||
" ⎢ ⎝2 2⎠ \n",
|
||
" ⎢- ──────────── + \n",
|
||
" ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
"2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ +\n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 \n",
|
||
"─────────── + ────────── + ──────────── ⎥ ⎢ ────────── + ─────────\n",
|
||
" 4 4 4 ⎥ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎡1/2 ⎤ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1\n",
|
||
" √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─\n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⅈ ⎥ ⎢ ⎝ 2 2⎠ ⎝ 2\n",
|
||
" ──────────── + ──────────── + ────────── ⎥ ⎢ ─ ⎥ ⎢────────────── + ───────\n",
|
||
" 4 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢-1/2⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ +\n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢-ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 \n",
|
||
"+ ────────── - ──────────── + ────────── ⎥ ⎢─── ⎥ ⎢ ────────── + ─────────\n",
|
||
" 4 4 4 ⎥ ⎣ 2 ⎦ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1\n",
|
||
"√2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─\n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⎝ 2 2⎠ ⎝ 2\n",
|
||
"──────────── + ────────── - ──────────────⎥ ⎢────────────── + ───────\n",
|
||
" 4 4 4 ⎦ ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"─── + ────────── + ──────────── ⎥ ⎡ 1\n",
|
||
" 4 4 ⎥ ⎡ 0 ⎤ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 0 ⎥ ⎢ \n",
|
||
" + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"───── + ──────────── + ──────────⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ ⎛1 ⅈ⎞\n",
|
||
" 4 4 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⅈ⋅⎜─ - ─⎟\n",
|
||
" ⎥, ⎢ ────────── + ────────── ⎥, ⎢ ⎝2 2⎠\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 2 2 ⎥ ⎢ - ─────────\n",
|
||
" ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ 2 \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
"─── + ────────── + ──────────── ⎥ ⎢√2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" 4 4 ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⅈ⋅⎜─ + ─⎟ \n",
|
||
" ⎥ ⎢──────────── + ──────────⎥ ⎢ ⎝2 2⎠ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣ 2 2 ⎦ ⎢- ───────── \n",
|
||
" + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎣ 2 \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"───── + ──────────── + ──────────⎥ \n",
|
||
" 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2\n",
|
||
"/2 ⎤ ⎢ - ──────────── + ─────────\n",
|
||
" ⎥ ⎡ 0 ⎤ ⎢ 4 4 \n",
|
||
"ⅈ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"─ ⎥ ⎢ 0 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ\n",
|
||
"2 ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜- ─ + ─\n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2\n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢- ──────────── + ───────────\n",
|
||
" ⅈ⋅⎜─ + ─⎟ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ 4 4 \n",
|
||
" ⎝2 2⎠ ⎥, ⎢ ──────────── + ──────────── ⎥, ⎢ \n",
|
||
" - ───────── ⎥ ⎢ 2 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" 2 ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟\n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠\n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢ ────────── + ────────────\n",
|
||
" ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 4 4 \n",
|
||
" ⎝ 2 2⎠⎥ ⎢────────────── + ────────────⎥ ⎢ \n",
|
||
"- ───────────⎥ ⎣ 2 2 ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 \n",
|
||
" 2 ⎦ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝ 2 \n",
|
||
" ⎢ ────────────── + ──────────\n",
|
||
" ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
"⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─\n",
|
||
"⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2\n",
|
||
"─ - ──────────── + ────────── ⎥ ⎢ - ──────────── + ────────── - ───────────\n",
|
||
" 4 4 ⎥ ⎢ 4 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
"⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟ \n",
|
||
"⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ \n",
|
||
"─ + ────────── - ──────────────⎥ ⎢- ──────────── + ──────────── + ────────── \n",
|
||
" 4 4 ⎥ ⎢ 4 4 4 \n",
|
||
" ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" + ────────── + ──────────── ⎥ ⎢ - ────────── - ────────── + ──────────── \n",
|
||
" 4 4 ⎥ ⎢ 4 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
"ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ\n",
|
||
"─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─\n",
|
||
"2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2\n",
|
||
"── + ──────────── + ────────── ⎥ ⎢- ────────── + ────────────── - ───────────\n",
|
||
" 4 4 ⎦ ⎣ 4 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" ⎡ 2 2 \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"⎞ ⎛1 ⅈ⎞ ⎤ ⎢ ⎜─ - ─⎟ ⎜─ + ─⎟ \n",
|
||
"⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"⎠ ⎝2 2⎠ ⎥ ⎢ ⎜─ - ─⎟⋅⎜─ + ─⎟ + ──────── + ──────── \n",
|
||
"─ + ────────── ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ 2 2 \n",
|
||
" 4 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 \n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞\n",
|
||
" √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ + ─⎟ ⎜- ─ + ─⎟\n",
|
||
" ⎝ 2 2⎠⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠\n",
|
||
"- ──────────────⎥ ⎢───────────────── + ─────────────── + ──────── + ─────────\n",
|
||
" 4 ⎥ ⎢ 2 2 2 2\n",
|
||
" ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ 2 2 \n",
|
||
" √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎜─ - ─⎟ ⎜─ + ─⎟ \n",
|
||
"+ ──────────── ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" 4 ⎥ ⎢ ⎜─ - ─⎟⋅⎜─ + ─⎟ + ──────── + ──────── \n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ 2 2 \n",
|
||
"⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
"⎟ √2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢ 2 \n",
|
||
"⎠ ⎝2 2⎠⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞\n",
|
||
"─ + ────────────⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ + ─⎟ ⎜- ─ + ─⎟\n",
|
||
" 4 ⎦ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠\n",
|
||
" ⎢───────────────── + ─────────────── + ──────── + ─────────\n",
|
||
" ⎣ 2 2 2 2\n",
|
||
"\n",
|
||
" ⎤ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ ⎡ \n",
|
||
" ⎥ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎢ \n",
|
||
" ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎡1/2⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"⋅⎜─ - ─⎟⎥ ⎢ ────────── + ────────── ⎥ ⎢ ⎥ ⎢ ────────── + ────────── ⎥ ⎢ \n",
|
||
" ⎝2 2⎠⎥ ⎢ 2 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
"────────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
" ⎥, ⎢√2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥, ⎢ ⎥, ⎢√2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥, ⎢ \n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢1/2⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
" ⎥ ⎢──────────── + ──────────⎥ ⎢ ⎥ ⎢──────────── + ──────────⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 0 ⎥ ⎣ 2 ⎦ ⎢ 0 ⎥ ⎢ⅈ\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎢─\n",
|
||
" ⎥ ⎣ \n",
|
||
" ⎛1 ⅈ⎞⎥ \n",
|
||
"⋅⎜─ - ─⎟⎥ \n",
|
||
" ⎝2 2⎠⎥ \n",
|
||
"────────⎥ \n",
|
||
" ⎦ \n",
|
||
"\n",
|
||
" ⎡ 2 2 \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ ⎜─ - ─⎟ ⎜─ + ─⎟ \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎢ ⎜─ - ─⎟⋅⎜─ + ─⎟ + ──────── + ──────── \n",
|
||
" 1/2 ⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠ 2 2 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⅈ ⎥ ⎢ 2 \n",
|
||
" ─ ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ \n",
|
||
" 2 ⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ + ─⎟ ⎜- \n",
|
||
" ⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢───────────────── + ─────────────── + ──────── + ───\n",
|
||
"ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ 2 2 2 \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥, ⎢ \n",
|
||
"───────── + ───────── ⎥ ⎢ 2 \n",
|
||
" 2 2 ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ \n",
|
||
" ⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ + ─⎟ ⎜- \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ \n",
|
||
"⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢───────────────── + ─────────────── + ──────── + ───\n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 2 2 2 \n",
|
||
"────────── + ─────────⎥ ⎢ \n",
|
||
" 2 2 ⎦ ⎢ 2 \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ⎢ ⎜- ─ + ─⎟ ⎜─ + ─⎟\n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝ 2 2⎠ ⎝2 2⎠\n",
|
||
" ⎢ ⎜- ─ + ─⎟⋅⎜─ + ─⎟ + ────────── + ───────\n",
|
||
" ⎣ ⎝ 2 2⎠ ⎝2 2⎠ 2 2 \n",
|
||
"\n",
|
||
" ⎤ \n",
|
||
" ⎥ \n",
|
||
" ⎥ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2\n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎥ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎢ ────────── + ──────────── + ──\n",
|
||
" ⎥ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ───────── + ───────── ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
"─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ 2 2 ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ \n",
|
||
"2 2⎠ ⎝2 2⎠⎥ ⎢ ⎥ ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ \n",
|
||
"──────────────⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ────────────── + ──────────── + \n",
|
||
" 2 ⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢ 4 4 \n",
|
||
" ⎥, ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥, ⎢ \n",
|
||
" ⎥ ⎢─────────── + ─────────⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 2 2 ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ √\n",
|
||
"─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"2 2⎠ ⎝2 2⎠⎥ ⎢ 1/2 ⎥ ⎢ - ────────── - ──────────── - ─\n",
|
||
"──────────────⎥ ⎢ ⎥ ⎢ 4 4 \n",
|
||
" 2 ⎥ ⎢ ⅈ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
"2 ⎥ ⎣ 2 ⎦ ⎢ √2⋅⎜─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅\n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ \n",
|
||
" ⎥ ⎢- ────────── - ──────────── - ───\n",
|
||
" ⎥ ⎣ 4 4 \n",
|
||
"─ ⎥ \n",
|
||
" ⎦ \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ 2 \n",
|
||
"⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ \n",
|
||
"──────── + ──────────── ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" 4 4 ⎥ ⎢ ───────────────── + ─────────────── + ──────── \n",
|
||
" ⎥ ⎢ 2 2 2 \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"√2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ 2\n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
"──────────── + ────────── ⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜- ─ + ─⎟ \n",
|
||
" 4 4 ⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ \n",
|
||
" ⎥, ⎢───────────────── + ─────────────── + ──────────\n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 2 2 2 \n",
|
||
"2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 \n",
|
||
"─────────── - ────────── ⎥ ⎢ ⎜- ─ + ─⎟⋅⎜─ + ─⎟ + ⎜- ─ + ─⎟⋅⎜─ \n",
|
||
" 4 4 ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ \n",
|
||
"ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞\n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⎜- ─ + ─⎟⋅⎜─ + ─⎟ + ⎜- ─ + ─⎟\n",
|
||
"───────── - ──────────────⎥ ⎣ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠\n",
|
||
" 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎡ \n",
|
||
" ⎤ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⅈ⋅(-1 \n",
|
||
" ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ ──────\n",
|
||
"+ ───────────────── ⎥ ⎡ 0 ⎤ ⎢ \n",
|
||
" 2 ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎡-1/2⎤ ⎢ 0 ⎥ ⎢⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎜─ - ─⎟⋅⎜─ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢-ⅈ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢⎝2 2⎠ ⎝2 \n",
|
||
" ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢─── ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ ⎥ ⎢───────────\n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ 2 \n",
|
||
" + ─────────────────⎥, ⎢ ⎥, ⎢ - ──────────── - ──────────── ⎥, ⎢ \n",
|
||
" 2 ⎥ ⎢1/2 ⎥ ⎢ 2 2 ⎥ ⎢⎛ 1 ⅈ⎞ ⎛\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎜- ─ + ─⎟⋅⎜\n",
|
||
" ⅈ⎞ ⎥ ⎢ ⅈ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢⎝ 2 2⎠ ⎝\n",
|
||
"- ─⎟ ⎥ ⎢ ─ ⎥ ⎢ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢───────────\n",
|
||
" 2⎠ ⎥ ⎣ 2 ⎦ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢- ──────────── - ──────────────⎥ ⎢ \n",
|
||
"2 ⎥ ⎣ 2 2 ⎦ ⎢ \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞\n",
|
||
" ⎥ ⎢ ⎜- ─ + ─⎟\n",
|
||
" ⎦ ⎢ ⎝ 2 2⎠\n",
|
||
" ⎢ ─────────\n",
|
||
" ⎣ 2\n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"+ ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"──────────── + ─────────────── + ──────── + ────────────────── ⎥ \n",
|
||
" 4 2 2 4 ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡√2⋅ⅈ⎤ \n",
|
||
"+ ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢────⎥ \n",
|
||
" 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ \n",
|
||
"──── + ──────────────────── + ────────────────── + ─────────────────⎥ ⎢ ⎥ \n",
|
||
" 4 4 2 ⎥ ⎢ √2 ⎥ \n",
|
||
" ⎥, ⎢ ── ⎥,\n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 2 ⎥ \n",
|
||
"─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ⎥ \n",
|
||
"2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 0 ⎥ \n",
|
||
"────── + ────────────────── + ────────────────── + ─────────────────⎥ ⎢ ⎥ \n",
|
||
" 4 4 2 ⎥ ⎣ 0 ⎦ \n",
|
||
" ⎥ \n",
|
||
" 2 ⎥ \n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ ⎜- ─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ \n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"──────── + ──────────────────── + ────────── + ────────────────── ⎥ \n",
|
||
" 4 2 4 ⎦ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ⎤ \n",
|
||
" ⎢- ── + ────⎥ ⎢- ── + ────⎥ \n",
|
||
" ⎡ ⅈ ⎤ ⎡ ⅈ ⎤ ⎡√2⋅ⅈ⎤ ⎢ 4 4 ⎥ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡ ⅈ ⎤ ⎡\n",
|
||
" ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢\n",
|
||
" ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎢1/2 ⎥ ⎢1/2⎥ ⎢ √2 ⎥ ⎢ 4 4 ⎥ ⎢1/2 ⎥ ⎢ 4 4 ⎥ ⎢√2⋅ⅈ⎥ ⎢1/2⎥ ⎢\n",
|
||
" ⎢ ⎥, ⎢ ⎥, ⎢ ── ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢────⎥, ⎢ ⎥, ⎢\n",
|
||
" ⎢-1/2⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢\n",
|
||
" ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢─── ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢\n",
|
||
" ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢───⎥ ⎢\n",
|
||
" ⎣ 2 ⎦ ⎣1/2⎦ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣-1/2⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣\n",
|
||
" ⎢ ── - ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
" ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ \n",
|
||
" 0 ⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎡√2⋅ⅈ⎤ ⎡ ⅈ ⎤ ⎡\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢───────── + ─────────⎥ ⎢────⎥ ⎢ ─ ⎥ ⎢\n",
|
||
" 0 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢\n",
|
||
" ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
"-√2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 1/2 ⎥ ⎢ √2 ⎥ ⎢1/2⎥ ⎢\n",
|
||
"────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ── ⎥, ⎢ ⎥, ⎢\n",
|
||
" 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢\n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢- ── - ────⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢\n",
|
||
"√2⋅ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢\n",
|
||
"────⎥ ⎢ ⎥ ⎢ ⎥ ⎢───────── + ─────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" 2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 2 ⎥ ⎣ 0 ⎦ ⎣1/2⎦ ⎣\n",
|
||
" ⎢ ── + ──── ⎥ ⎢- ── + ────⎥ ⎢ ⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 1/2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟ ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎡ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢- ── + ────⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
"√2⋅ⅈ⎤ ⎡ ⅈ ⎤ ⎢ ───────── + ───────── ⎥ ⎡-1/2⎤ ⎢ 4 4 ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"────⎥ ⎢ ─ ⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢─────────── \n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ 1/2 ⎥ ⎢ ─ ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" √2 ⎥ ⎢1/2 ⎥ ⎢ ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 0\n",
|
||
" ── ⎥, ⎢ ⎥, ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" 2 ⎥ ⎢-1/2⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎛ 1\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ─ ⎥ ⎢ ── - ──── ⎥ ⎢ ⅈ⋅⎜- ─\n",
|
||
" 0 ⎥ ⎢ ⅈ ⎥ ⎢─────────── + ─────────⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ ⎝ 2\n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 0 ⎦ ⎣ 2 ⎦ ⎢ ⎥ ⎣1/2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1 \n",
|
||
" ⎢ ⅈ ⎥ ⎢- ── - ────⎥ ⎢ - ─ \n",
|
||
" ⎢ ─ ⎥ ⎣ 4 4 ⎦ ⎣ 2 \n",
|
||
" ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎛1 ⅈ⎞⎤ ⎢ 1 ⅈ ⎝2 2⎠ ⎥ ⎡ √2 √2⋅ⅈ\n",
|
||
" ⅈ⋅⎜─ - ─⎟⎥ ⎢ ─ - ─ + ───────── ⎥ ⎢ ── + ────\n",
|
||
" ⎝2 2⎠⎥ ⎡-ⅈ ⎤ ⎡ 0 ⎤ ⎢ 4 4 2 ⎥ ⎡ 1 ⅈ ⎤ ⎢ 4 4 \n",
|
||
"+ ─────────⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ + ─ ⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ √2 √2⋅\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ + ────────── - ─ ⎥ ⎢ ⎥ ⎢- ── - ───\n",
|
||
" ⎥ ⎢-1/2⎥ ⎢ √2 ⎥ ⎢ 4 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ── ⎥, ⎢ ⎥, ⎢- ─ - ─⎥, ⎢ \n",
|
||
" ⅈ⎞ ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 2 2⎥ ⎢ √2 √2⋅\n",
|
||
" + ─⎟ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢- ── + ───\n",
|
||
" 2⎠ ⎥ ⎢ 2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢1 ⎝ 2 2⎠ ⅈ ⎥ ⎢ 0 ⎥ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢──────⎥ ⎢─ + ─────────── - ─ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ ⎥ ⎣1/2 ⎦ ⎣ 2 ⎦ ⎢4 2 4 ⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ\n",
|
||
"+ ─ ⎥ ⎢ ⎥ ⎢ ── - ────\n",
|
||
" 2 ⎦ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎣ 4 4 \n",
|
||
" ⎢- ─ + ────────── + ─⎥ \n",
|
||
" ⎣ 4 4 4⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ ⅈ ⎤ ⎡ √2 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ ⎢ ─ ⎥ ⎢ ── + \n",
|
||
" ⎥ ⎢ 4 4 ⎥ ⎡ 1 ⅈ ⎤ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎡ 0 ⎤ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ─ + ─ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢-ⅈ ⎥ ⎢ 0 ⎥ ⎢ √2 \n",
|
||
"─⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢───⎥ ⎢ ⎥ ⎢- ── -\n",
|
||
" ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢- ─ - ─⎥, ⎢─── ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ─ + ─ ⎥, ⎢ \n",
|
||
"ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ √2 \n",
|
||
"─⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ── - \n",
|
||
" ⎥ ⎢ 4 4 ⎥ ⎢ 0 ⎥ ⎢1/2 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ - ─⎥ ⎢ \n",
|
||
" ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎣-1/2⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎣ 2 2⎦ ⎢ √2 \n",
|
||
" ⎥ ⎢- ── - ────⎥ ⎢ ── + ──── ⎥ ⎢───⎥ ⎢- ── +\n",
|
||
" ⎦ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 2 ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎢ ────────── + ──────────── + ────────── + \n",
|
||
"√2⋅ⅈ ⎤ ⎢ 4 4 4 \n",
|
||
"──── ⎥ ⎢ \n",
|
||
" 4 ⎥ ⎡ 0 ⎤ ⎡1/2 ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟\n",
|
||
" √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢-1/2⎥ ⎡1/2 ⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠\n",
|
||
" ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ────────── - ──────────── - ────────────\n",
|
||
" 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ ⅈ ⎥ ⎢-1/2⎥ ⎢ 4 4 4 \n",
|
||
" ⎥, ⎢- ─ + ─⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"√2⋅ⅈ ⎥ ⎢ 2 2⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ \n",
|
||
" 4 ⎥ ⎢ 1 ⅈ ⎥ ⎢-ⅈ ⎥ ⎣1/2 ⎦ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎥ ⎢ ─ - ─ ⎥ ⎢─── ⎥ ⎢ ────────── + ──────────── + ────────── + \n",
|
||
" √2⋅ⅈ⎥ ⎣ 2 2 ⎦ ⎣ 2 ⎦ ⎢ 4 4 4 \n",
|
||
" ────⎥ ⎢ \n",
|
||
" 4 ⎦ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ⎢ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠\n",
|
||
" ⎢- ────────── - ──────────── - ────────────\n",
|
||
" ⎣ 4 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 \n",
|
||
"√2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎝2 \n",
|
||
"──────────── ⎥ ⎢ ──────\n",
|
||
" 4 ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞⎥ ⎡ 1 ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ 1 ⅈ ⎤ ⎢ 4 4 ⎥ ⎢ ⎛1\n",
|
||
" √2⋅⎜─ - ─⎟⎥ ⎢ ─ + ─ ⎥ ⎢ ⎥ ⎢ ─ + ─ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─\n",
|
||
" ⎝2 2⎠⎥ ⎢ 2 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎝2\n",
|
||
" - ──────────⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ - ─────\n",
|
||
" 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 4\n",
|
||
" ⎥, ⎢- ─ - ─⎥, ⎢ ⎥, ⎢- ─ - ─⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ 2 2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎛ \n",
|
||
"√2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ √2⋅ⅈ⋅⎜- \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ ⎝ \n",
|
||
"──────────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ────────\n",
|
||
" 4 ⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢- ── - ────⎥ ⎢ ── - ──── ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎢ ⎛1 \n",
|
||
" √2⋅⎜─ - ─⎟⎥ ⎢ √2⋅⎜─ +\n",
|
||
" ⎝2 2⎠⎥ ⎢ ⎝2 \n",
|
||
" - ──────────⎥ ⎢- ───────\n",
|
||
" 4 ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ \n",
|
||
"- ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"──── + ──────────── + ────────── + ──────────── ⎥ ⎢ ─\n",
|
||
" 4 4 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎡ ⅈ ⎤ ⎢ \n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ \n",
|
||
"───── - ──────────── - ──────────── - ────────── ⎥ ⎢ ── - ──── ⎥ ⎢───⎥ ⎢- \n",
|
||
" 4 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ \n",
|
||
"─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ ── + ──── ⎥ ⎢───⎥ ⎢ \n",
|
||
"2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
"────── + ──────────── + ──────────── + ────────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4 4 4 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢ \n",
|
||
" ⎥ ⎢- ── - ────⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎣ 2 ⎦ ⎢ \n",
|
||
" ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ \n",
|
||
" 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ \n",
|
||
"─── - ──────────── - ──────────── - ──────────────⎥ ⎢ \n",
|
||
" 4 4 4 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
"2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"───────────── + ────────── + ──────────── + ──────────── ⎥ \n",
|
||
" 4 4 4 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ \n",
|
||
" ⎥ ⎢- ── - ────⎥ \n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ 4 4 ⎥ ⎡ \n",
|
||
"√2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ \n",
|
||
"──────────── - ──────────── - ────────── - ──────────────⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" 4 4 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 1\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ─\n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2\n",
|
||
" √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢ \n",
|
||
" ────────────── + ──────────── ⎥ ⎢ ⎥ ⎢- \n",
|
||
" 2 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣ \n",
|
||
" ⎥ ⎢- ── - ────⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎣ 4 4 ⎦ \n",
|
||
" √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ \n",
|
||
" - ──────────── - ────────────── ⎥ \n",
|
||
" 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎢ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
" ⎢ ───────────── - ─────────── + ────────── + ──────────── ⎥ \n",
|
||
" ⎢ 8 8 4 4 ⎥ \n",
|
||
" ⎢ ⎥ ⎡ ⎛\n",
|
||
" 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢√2⋅⎜\n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ ⎥ ⎢ ⎝\n",
|
||
" 0 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ √2⋅(-1 + ⅈ) √2⋅ⅈ⋅(-1 + ⅈ) ⎥ ⎢────\n",
|
||
" ⎥ ⎢ - ──────────── - ────────── + ─────────── - ───────────── ⎥ ⎢ \n",
|
||
" ⅈ ⎥ ⎢ 4 4 8 8 ⎥ ⎢ \n",
|
||
" - ─ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
"1 ⅈ⎥ ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
"─ + ─⎥ ⎢ ────────────── + ───────────── - ─────────── + ──────────── ⎥ ⎢ \n",
|
||
"2 2⎦ ⎢ 4 8 8 4 ⎥ ⎢ \n",
|
||
" ⎢ ⎥ ⎣ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ \n",
|
||
" ⎢ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎢ ⎝ 2 2⎠ √2⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ)⎥ \n",
|
||
" ⎢- ──────────── + ─────────── - ────────────── - ─────────────⎥ \n",
|
||
" ⎣ 4 8 4 8 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 0 ⎤ \n",
|
||
"1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ ⎢ ⎥ ⎡ ⎛1 ⅈ⎞ \n",
|
||
"─ - ─⎟ √2⋅⎜- ─ + ─⎟⎥ ⎢ 1 ⅈ ⎥ ⎡ 0 ⎤ ⎢√2⋅⎜─ - ─⎟ √2\n",
|
||
"2 2⎠ ⎝ 2 2⎠⎥ ⎢ - ─ + ─ ⎥ ⎢ ⎥ ⎢ ⎝2 2⎠ \n",
|
||
"────── + ────────────⎥ ⎢ 2 2 ⎥ ⎢ 1 ⅈ⎥ ⎢────────── + ──\n",
|
||
"2 2 ⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 2 2⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥, ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥, ⎢ ⎥, ⎢ ⎛ 1 \n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 0 ⎥ ⎢ √2⋅⎜- ─ +\n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢─────────── + ─────────⎥ ⎢ ⎥ ⎢ ⎝ 2 \n",
|
||
" ⎥ ⎢ 2 2 ⎥ ⎢ 1 ⅈ⎥ ⎢ \n",
|
||
" 0 ⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢ 0 \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎣ 2 2⎦ ⎢ \n",
|
||
" 0 ⎦ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎣ 0 \n",
|
||
" ⎣ ⎝ 2 2⎠ ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
" ⎢ ────────────── + ────────── + ──────────── + ──────────── ⎥ \n",
|
||
" ⎢ 4 4 4 4 ⎥ \n",
|
||
" ⎛ 1 ⅈ⎞⎤ ⎢ ⎥ \n",
|
||
"⋅⎜- ─ + ─⎟⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎡ \n",
|
||
" ⎝ 2 2⎠⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
"──────────⎥ ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢ ────────────── + ──────────── ⎥ ⎢-\n",
|
||
" ⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ─⎟ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ \n",
|
||
" 2⎠ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠⎥ ⎢ \n",
|
||
" ⎥ ⎢- ──────────── + ────────── + ──────────── - ──────────────⎥ ⎢ \n",
|
||
" ⎥ ⎢ 4 4 4 4 ⎥ ⎣ \n",
|
||
" ⎦ ⎢ ⎥ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ \n",
|
||
" ⎢ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ \n",
|
||
" ⎢ ──────────── - ────────────── ⎥ \n",
|
||
" ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
" ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ \n",
|
||
" ⎢────────────── + ────────── + ──────────── + ────────────⎥ \n",
|
||
" ⎢ 4 4 4 4 ⎥ \n",
|
||
" ⎢ ⎥ ⎡ \n",
|
||
" 0 ⎤ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" 1 ⅈ⎥ ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ─ + ─⎥ ⎢ ────────────── + ──────────── ⎥ ⎢ ⎛1 \n",
|
||
" 2 2⎥ ⎢ 2 2 ⎥ ⎢√2⋅⎜─ -\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎝2 \n",
|
||
" 0 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢───────\n",
|
||
" ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ 2 \n",
|
||
"1 ⅈ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
"─ - ─ ⎥ ⎢────────────── + ────────── + ──────────── + ────────────⎥ ⎢ \n",
|
||
"2 2 ⎦ ⎢ 4 4 4 4 ⎥ ⎢ √\n",
|
||
" ⎢ ⎥ ⎣ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ \n",
|
||
" ⎢ ────────────── + ──────────── ⎥ \n",
|
||
" ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 0 ⎤ \n",
|
||
" 0 ⎤ ⎢ ⎥ ⎡ 0 \n",
|
||
" ⎥ ⎢ 1 ⅈ ⎥ ⎢ \n",
|
||
" 0 ⎥ ⎢ - ─ + ─ ⎥ ⎢ 0 \n",
|
||
" ⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 \n",
|
||
" ─⎟ √2⋅⎜- ─ + ─⎟⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - \n",
|
||
" 2⎠ ⎝ 2 2⎠⎥, ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜- ─ + ─⎟⎥, ⎢ ⎝ 2 2⎠ ⎝2 \n",
|
||
"─── + ────────────⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢────────────── + ──────────\n",
|
||
" 2 ⎥ ⎢- ───────── - ───────────⎥ ⎢ 2 2 \n",
|
||
" ⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎝ 2 2⎠ ⎦ ⎢ -ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎣ ⎝ 2 2⎠ \n",
|
||
" ⎣ ⎝ 2 2⎠ ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ ⎡ ⎛1\n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜─\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⎝2\n",
|
||
" ⎢- ──────────── + ────────── + ──────────── - ──────────────⎥ ⎢- ───────\n",
|
||
" ⎢ 4 4 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎤ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
"ⅈ⎞⎥ ⎢ ──────────── - ────────────── ⎥ ⎢ \n",
|
||
"─⎟⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
"2⎠⎥, ⎢ ⎥, ⎢ \n",
|
||
"──⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛ \n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜- \n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝ \n",
|
||
" ⎥ ⎢ ────────────── + ────────── + ──────────── + ──────────── ⎥ ⎢ ────────\n",
|
||
" ⎥ ⎢ 4 4 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎦ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ⎢ ────────────── + ──────────── ⎥ ⎢ \n",
|
||
" ⎣ 2 2 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ \n",
|
||
" - ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎡ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
"───── + ────────── + ──────────── - ──────────────⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ -\n",
|
||
" 4 4 4 ⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
" ⎥ ⎢───────────────── + ────\n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ 2 \n",
|
||
" √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ──────────── - ────────────── ⎥ ⎢ ⎜- ─ + ─⎟⋅\n",
|
||
" 2 2 ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
" ⎥, ⎢ \n",
|
||
"1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
"2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ -\n",
|
||
"────── - ──────────── - ────────── + ──────────── ⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
" 4 4 4 ⎥ ⎢───────────────── + ────\n",
|
||
" ⎥ ⎢ 2 \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ ⎢ ⎜- ─ + ─⎟⋅\n",
|
||
" ────────────── - ──────────── ⎥ ⎣ ⎝ 2 2⎠ \n",
|
||
" 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ \n",
|
||
" ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"─────────── + ──────── + ─────────────────⎥ ⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ \n",
|
||
" 2 2 2 ⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟⎥ ⎡ \n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ \n",
|
||
"⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢────────── + ────────────⎥ ⎢ 1\n",
|
||
"⎜─ + ─⎟ + ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ 2 2 ⎥ ⎢- ─\n",
|
||
"⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎥ ⎢ 2\n",
|
||
" ⎥, ⎢ ⎛ 1 ⅈ⎞ ⎥, ⎢ \n",
|
||
" 2 ⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ 1\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 0 ⎥ ⎢- ─\n",
|
||
"─────────── + ──────── + ─────────────────⎥ ⎢ ⎥ ⎣ 2\n",
|
||
" 2 2 2 ⎥ ⎣ 0 ⎦ \n",
|
||
" ⎥ \n",
|
||
"⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"⎜─ + ─⎟ + ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ \n",
|
||
"⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎛1 \n",
|
||
" ⎢ ⎜- ─ + ─⎟⋅⎜─ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝2 \n",
|
||
" ⎡ 0 ⎤ ⎢ ─────────────\n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ ⎢ ⎥ ⎢ 2 \n",
|
||
"0 ⎤ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟⎥ ⎢ 1 ⅈ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ - ─ + ─ ⎥ ⎢ \n",
|
||
" ⅈ⎥ ⎢────────── + ────────────⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
" + ─⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 2⎥ ⎢ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎛ 1 ⅈ⎞ ⎥, ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥, ⎢ \n",
|
||
"0 ⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 \n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢─────────── + ─────────⎥ ⎢⎜- ─ + ─⎟⋅⎜─ +\n",
|
||
" ⅈ⎥ ⎢ ⎥ ⎢ 2 2 ⎥ ⎢⎝ 2 2⎠ ⎝2 \n",
|
||
" + ─⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢──────────────\n",
|
||
" 2⎦ ⎢ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 2 \n",
|
||
" ⎣ 0 ⎦ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎣ ⎝ 2 2⎠ ⎦ ⎢ \n",
|
||
" ⎢ \n",
|
||
" ⎢ \n",
|
||
" ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"+ ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"──── + ─────────────── + ──────── + ───────────────── ⎥ ⎡ ⎛ 1 ⅈ⎞ ⎛1 \n",
|
||
" 2 2 2 ⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ -\n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎝2 \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢─────────── + ──────\n",
|
||
" ⎜- ─ + ─⎟⋅⎜─ + ─⎟ + ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ 2 2 \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" 2 ⎥, ⎢ ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
" ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜- ─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 0 \n",
|
||
"─── + ─────────────── + ────────── + ─────────────────⎥ ⎢ \n",
|
||
" 2 2 2 ⎥ ⎢ 1 ⅈ \n",
|
||
" ⎥ ⎢ - ─ + ─ \n",
|
||
" 2 ⎥ ⎣ 2 2 \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ \n",
|
||
" ⎜- ─ + ─⎟⋅⎜─ + ─⎟ + ⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎡ 2\n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢⎛1 ⅈ⎞ \n",
|
||
" ⎢ ────────────── + ────────── + ──────────── + ──────────── ⎥ ⎢⎜─ - ─⎟ \n",
|
||
" ⅈ⎞⎤ ⎢ 4 4 4 4 ⎥ ⎢⎝2 2⎠ \n",
|
||
" ─⎟⎥ ⎢ ⎥ ⎢────────\n",
|
||
" 2⎠⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ 2 \n",
|
||
"───⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ────────────── + ──────────── ⎥ ⎢ ⎛ \n",
|
||
" ⎥ ⎢ 2 2 ⎥ ⎢ ⎜- \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎝ \n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ \n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⎛ \n",
|
||
" ⎥ ⎢- ──────────── - ──────────── - ────────── - ──────────────⎥ ⎢ ⎜- \n",
|
||
" ⎥ ⎢ 4 4 4 4 ⎥ ⎢ ⎝ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" ⎢ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ⎢ - ──────────── - ────────────── ⎥ ⎣ \n",
|
||
" ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ \n",
|
||
" ⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ \n",
|
||
" + ────────── + ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎡ 0 \n",
|
||
" 2 ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎡ 0 ⎤ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ 0 \n",
|
||
" 2 ⎥ ⎢ 1 ⅈ ⎥ ⎢ \n",
|
||
"1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ─ - ─ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ\n",
|
||
"─ + ─⎟ + ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ 2 2 ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜- ─ + ─\n",
|
||
"2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥, ⎢ ⎥, ⎢ ⎝2 2⎠ ⎝ 2 2\n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢- ──────────── - ─────────────\n",
|
||
" 2 ⎥ ⎢ ⎥ ⎢ 2 2 \n",
|
||
"1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 1 ⅈ⎥ ⎢ \n",
|
||
"─ + ─⎟ + ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢- ─ + ─⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎣ 2 2⎦ ⎢ -√2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎥ ⎣ ⎝ 2 2⎠ \n",
|
||
" 2 ⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ \n",
|
||
" 2⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎡ 2 \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟\n",
|
||
" ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠\n",
|
||
" ⎢ ────────────────── + ──────────────────── + ──────── + ─────────────────\n",
|
||
" ⎢ 4 4 2 2 \n",
|
||
" ⎤ ⎢ \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ \n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"⎞⎥ ⎢ ──────────────────── + ⎜- ─ + ─⎟⋅⎜─ - ─⎟ \n",
|
||
"⎟⎥ ⎢ 2 ⎝ 2 2⎠ ⎝2 2⎠ \n",
|
||
"⎠⎥, ⎢ \n",
|
||
"─⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
" ⎥ ⎢ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ ⎜- ─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─\n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2\n",
|
||
" ⎥ ⎢────────────────── + ──────────────────── + ────────── + ────────────────\n",
|
||
" ⎦ ⎢ 4 4 2 2 \n",
|
||
" ⎢ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ 2 \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢ ──────────────────── + ⎜- ─ + ─⎟ \n",
|
||
" ⎣ 2 ⎝ 2 2⎠ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎤ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ⎤ \n",
|
||
" ⎥ ⎢- ── - ────⎥ ⎢- ── - ────⎥ \n",
|
||
" ⎥ ⎡-√2 ⎤ ⎡-1/2⎤ ⎡-√2 ⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎡ 0 \n",
|
||
" ⎥ ⎢────⎥ ⎢ ⎥ ⎢────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎡-1/2⎤ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎡-1/2⎤ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢1/2 ⎥ ⎢ √2 ⎥ ⎢ 4 4 ⎥ ⎢1/2 ⎥ ⎢ 4 4 ⎥ ⎢-√2\n",
|
||
" ⎥, ⎢ ── ⎥, ⎢─── ⎥, ⎢ ⎥, ⎢ ── ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢───\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢1/2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 \n",
|
||
"⎞⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ \n",
|
||
"⎟⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎣1/2 ⎦ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎣-1/2⎦ ⎢ 4 4 ⎥ ⎢ √2\n",
|
||
"⎠⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ──\n",
|
||
"─⎥ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 \n",
|
||
" ⎥ ⎢ ── - ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⎥ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎦ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ⎤ \n",
|
||
" ⎢- ── + ────⎥ ⎢- ── + ────⎥ \n",
|
||
" ⎤ ⎡-1/2⎤ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎡-√2 ⎤ ⎡-\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢────⎥ ⎢─\n",
|
||
" ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎡-1/2⎤ ⎢ 2 ⎥ ⎡-1/2⎤ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢1/2 ⎥ ⎢ √2 ⎥ ⎢1/2 ⎥ ⎢ \n",
|
||
"─⎥, ⎢ ─ ⎥, ⎢──────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ── ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢-ⅈ ⎥ ⎢ √2⋅ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎣1/2 ⎦ ⎢ 0 ⎥ ⎣1/2 ⎦ ⎢ \n",
|
||
" ⎥ ⎢─── ⎥ ⎢ ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎣ \n",
|
||
" ⎢ ── + ──── ⎥ ⎢- ── + ────⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ⎤ ⎡ 1\n",
|
||
" ⎢- ── - ────⎥ ⎢- ─\n",
|
||
"√2 ⎤ ⎡-1/2⎤ ⎡-1/2⎤ ⎡-ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎢ 4\n",
|
||
"───⎥ ⎢ ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"2 ⎥ ⎢1/2 ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎡1/2 ⎤ ⎢ 0 ⎥ ⎢ 1 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ \n",
|
||
"√2 ⎥ ⎢-ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ ⎥ ⎢-1/2⎥ ⎢ √2⋅ⅈ ⎥ ⎢ 4 \n",
|
||
"── ⎥, ⎢─── ⎥, ⎢─── ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ─ - ─ ⎥, ⎢ ⎥, ⎢ ──── ⎥, ⎢ \n",
|
||
"2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2 ⎥ ⎢-1/2⎥ ⎢ 2 ⎥ ⎢ 1 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ \n",
|
||
"0 ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢-1/2⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎣1/2 ⎦ ⎢-√2⋅ⅈ ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢──────⎥ ⎢ \n",
|
||
"0 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣1/2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 2⎦ ⎣ 2 ⎦ ⎢ 1\n",
|
||
" ⎢- ── - ────⎥ ⎢- ─\n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ ⅈ⋅(-1 + ⅈ)⎤ \n",
|
||
" + ─ - ──────────⎥ \n",
|
||
" 4 4 ⎥ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡ 0 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎡0 ⎤ ⎢-√2⋅ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎡0 ⎤ ⎢ 1 ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢1 \n",
|
||
"+ ────────── - ─ ⎥ ⎢ ⎥ ⎢──────⎥ ⎢──────⎥ ⎢ ⎥ ⎢ ─ - ─ ⎥ ⎢──────⎥ ⎢─ - \n",
|
||
" 4 4 ⎥ ⎢-ⅈ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢-ⅈ⎥ ⎢ 2 2 ⎥ ⎢ 2 ⎥ ⎢2 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ ⅈ⋅(-1 + ⅈ) ⎥ ⎢0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 \n",
|
||
"- ─ - ────────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4 4 ⎥ ⎣0 ⎦ ⎢ √2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎣0 ⎦ ⎢ 1 ⅈ⎥ ⎢ √2⋅ⅈ ⎥ ⎢1 \n",
|
||
" ⎥ ⎢ ── ⎥ ⎢──────⎥ ⎢- ─ - ─⎥ ⎢ ──── ⎥ ⎢─ - \n",
|
||
" ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 2⎦ ⎣ 2 ⎦ ⎣2 \n",
|
||
" + ────────── + ─⎥ \n",
|
||
" 4 4⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 0 ⎤\n",
|
||
" ⎢ ⎥\n",
|
||
" ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟⎥\n",
|
||
"ⅈ⎥ ⎡0 ⎤ ⎢-√2⋅ⅈ ⎥ ⎡0⎤ ⎢ 1 ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥\n",
|
||
"─⎥ ⎢ ⎥ ⎢──────⎥ ⎢ ⎥ ⎢- ─ - ─⎥ ⎢- ─ - ─⎥ ⎢- ──────────── - ────────────⎥\n",
|
||
"2⎥ ⎢0 ⎥ ⎢ 2 ⎥ ⎢0⎥ ⎢ 2 2⎥ ⎢ 2 2⎥ ⎢ 2 2 ⎥\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥\n",
|
||
" ⎥ ⎢0 ⎥ ⎢ 0 ⎥ ⎢0⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
"ⅈ⎥ ⎣-ⅈ⎦ ⎢ -√2 ⎥ ⎣1⎦ ⎢ 1 ⅈ ⎥ ⎢ 1 ⅈ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥\n",
|
||
"─⎥ ⎢ ──── ⎥ ⎢ ─ - ─ ⎥ ⎢ ─ + ─ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟⎥\n",
|
||
"2⎦ ⎣ 2 ⎦ ⎣ 2 2 ⎦ ⎣ 2 2 ⎦ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥\n",
|
||
" ⎢- ──────────── - ────────────⎥\n",
|
||
" ⎣ 2 2 ⎦\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 0 ⎤ \n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎡ 0 ⎤ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎡ 0 ⎤ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ \n",
|
||
" ⎡0 ⎤ ⎢-√2⋅ⅈ ⎥ ⎡0 ⎤ ⎢-√2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 ⎥ \n",
|
||
" ⎢ ⎥ ⎢──────⎥ ⎢ ⎥ ⎢──────⎥ ⎢ - ──────────── - ──────────── ⎥ ⎢ ── ⎥ \n",
|
||
" ⎢-ⅈ⎥ ⎢ 2 ⎥ ⎢-ⅈ⎥ ⎢ 2 ⎥ ⎢ 2 2 ⎥ ⎢ 2 ⎥ \n",
|
||
", ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥,\n",
|
||
" ⎢0 ⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎣0 ⎦ ⎢-√2⋅ⅈ ⎥ ⎣0 ⎦ ⎢ √2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢-√2⋅ⅈ ⎥ \n",
|
||
" ⎢──────⎥ ⎢ ── ⎥ ⎢ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢──────⎥ \n",
|
||
" ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎣ 2 ⎦ \n",
|
||
" ⎢- ──────────── - ──────────────⎥ \n",
|
||
" ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 0\n",
|
||
" ⎡ 0 ⎤ ⎢ \n",
|
||
" ⎡ 0 ⎤ ⎢ ⎥ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞\n",
|
||
" ⎢ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟\n",
|
||
" ⎢ 1 ⅈ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ √2⋅ⅈ ⎥ ⎡0 ⎤ ⎢ ⎝2 2⎠\n",
|
||
" ⎢ ─ - ─ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ ──── ⎥ ⎢ ⎥ ⎢- ────────────\n",
|
||
" ⎢ 2 2 ⎥ ⎢- ──────────── - ──────────────⎥ ⎢ 2 ⎥ ⎢0 ⎥ ⎢ 2 \n",
|
||
" ⎢ ⎥, ⎢ 2 2 ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎢ 0 ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎢0 ⎥ ⎢ 0\n",
|
||
" ⎢ ⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ 1 ⅈ⎥ ⎢ ⎥ ⎢-√2⋅ⅈ ⎥ ⎣-1⎦ ⎢ \n",
|
||
" ⎢- ─ + ─⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢──────⎥ ⎢ \n",
|
||
" ⎣ 2 2⎦ ⎢ -√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎣ 2 ⎦ ⎢√2⋅(-1 + ⅈ) \n",
|
||
" ⎣ ⎝ 2 2⎠ ⎦ ⎢─────────── - \n",
|
||
" ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ \n",
|
||
" ⎢ ─ + ────────── - ─ ⎥ \n",
|
||
" ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ ⎢ 4 4 4 ⎥ ⎡ 1 \n",
|
||
" ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ─ +\n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ ───────────── + ────────── ⎥ ⎢- ─ + ────────── + ─⎥ ⎢ \n",
|
||
" √2⋅(-1 + ⅈ)⎥ ⎢ 4 2 ⎥ ⎢ 4 4 4⎥ ⎢ 1 \n",
|
||
" + ───────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ \n",
|
||
" 4 ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ √2⋅⎜- ─ + ─⎟⎥, ⎢ ⅈ⋅⎜─ - ─⎟ ⎥, ⎢ \n",
|
||
" ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ 1 ⅈ ⎝2 2⎠ ⎥ ⎢ 1 \n",
|
||
" ⎥ ⎢───────────── + ────────────⎥ ⎢ ─ - ─ + ───────── ⎥ ⎢ ─ +\n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎢ 4 2 ⎥ ⎢ 4 4 2 ⎥ ⎢ 4 \n",
|
||
"√2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠⎥ ⎢ 0 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 1 \n",
|
||
"──────────────⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢- ─ \n",
|
||
" 2 ⎦ ⎣ 0 ⎦ ⎢1 ⎝ 2 2⎠ ⅈ ⎥ ⎣ 4 \n",
|
||
" ⎢─ + ─────────── - ─ ⎥ \n",
|
||
" ⎣4 2 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ \n",
|
||
" ⎢ \n",
|
||
" ⎢ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 +\n",
|
||
" ⎢ ───────────── - ────────\n",
|
||
" ⅈ⋅(-1 + ⅈ) ⅈ ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ ⎢ 8 8 \n",
|
||
" ────────── - ─ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" 4 4 ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ ───────────── + ────────── ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢ 4 2 ⎥ ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 \n",
|
||
"+ ────────── + ─⎥ ⎢ ⎥ ⎢────────────── + ─────────\n",
|
||
" 4 4⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ 4 8 \n",
|
||
" ⎥, ⎢ √2⋅⎜- ─ + ─⎟⎥, ⎢ \n",
|
||
" ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" ────────── - ─ ⎥ ⎢───────────── + ────────────⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ \n",
|
||
" 4 4 ⎥ ⎢ 4 2 ⎥ ⎢ ⎝2 2⎠ √2⋅ⅈ⋅(-1\n",
|
||
" ⎥ ⎢ ⎥ ⎢ - ──────────── + ────────\n",
|
||
" ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢ 0 ⎥ ⎢ 4 8 \n",
|
||
"+ ────────── + ─⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4 4⎦ ⎣ 0 ⎦ ⎢ ⎛ 1 \n",
|
||
" ⎢ √2⋅⎜- ─ + \n",
|
||
" ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 \n",
|
||
" ⎢───────────── + ──────────\n",
|
||
" ⎣ 8 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" ⅈ) ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) \n",
|
||
"─── + ────────── + ──────────── ⎥ ⎢ ───────────── -\n",
|
||
" 4 4 ⎥ ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ ⎢ 8 \n",
|
||
" ⎥ ⎢ ─ + ────────── - ─ ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎢ 4 4 4 ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" √2⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
"+ ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"──── - ─────────── + ────────────⎥ ⎢- ─ + ────────── + ─⎥ ⎢────────────── + \n",
|
||
" 8 4 ⎥ ⎢ 4 4 4⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ 1 ⅈ ⅈ⋅(-1 + ⅈ)⎥ ⎢ \n",
|
||
" √2⋅⎜─ - ─⎟ ⎥ ⎢- ─ + ─ - ──────────⎥ ⎢ \n",
|
||
" + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎥ ⎢ 4 4 4 ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) \n",
|
||
"───── + ────────── + ─────────── ⎥ ⎢ ⎥ ⎢ ───────────── -\n",
|
||
" 4 8 ⎥ ⎢ 1 ⅈ ⅈ⋅(-1 + ⅈ) ⎥ ⎢ 8 \n",
|
||
" ⎥ ⎢ ─ - ─ - ────────── ⎥ ⎢ \n",
|
||
"ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎣ 4 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
"2⎠ √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"── + ─────────── - ──────────────⎥ ⎢────────────── + \n",
|
||
" 8 4 ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎡\n",
|
||
" ─────────── + ────────── + ──────────── ⎥ ⎢\n",
|
||
" 8 4 4 ⎥ ⎡ 0 ⎤ ⎢\n",
|
||
" ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎢ 0 ⎥ ⎢\n",
|
||
" √2⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢\n",
|
||
"√2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢\n",
|
||
"───────────── - ─────────── + ────────────⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢\n",
|
||
" 8 8 4 ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢\n",
|
||
" ⎥, ⎢ ───────────── + ────────── ⎥, ⎢\n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 2 ⎥ ⎢\n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢\n",
|
||
" √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢\n",
|
||
" ─────────── + ────────── + ──────────── ⎥ ⎢ √2⋅⎜- ─ + ─⎟⎥ ⎢\n",
|
||
" 8 4 4 ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢\n",
|
||
" ⎥ ⎢───────────── + ────────────⎥ ⎢\n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎣ 4 2 ⎦ ⎢\n",
|
||
" √2⋅⎜- ─ + ─⎟⎥ ⎢\n",
|
||
"√2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎣\n",
|
||
"───────────── - ─────────── + ────────────⎥ \n",
|
||
" 8 8 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ \n",
|
||
" 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ ⎢ ⎝2 2⎠ √2⋅\n",
|
||
" ─ + ────────── - ─ ⎥ ⎢ - ──────────── + ───\n",
|
||
" 4 4 4 ⎥ ⎡ 0 ⎤ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢ 0 ⎥ ⎢ ⎛ \n",
|
||
"- ─ + ────────── + ─ ⎥ ⎢ ⎥ ⎢ √2⋅⎜-\n",
|
||
" 4 4 4 ⎥ ⎢ ⎛1 ⅈ⎞⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ \n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢───────────── + ─────\n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ √2⋅(-1 + ⅈ) ⎝2 2⎠⎥ ⎢ 8 \n",
|
||
" ⅈ⋅⎜─ - ─⎟ ⎥, ⎢- ─────────── + ────────────⎥, ⎢ \n",
|
||
" 1 ⎝2 2⎠ ⅈ ⎥ ⎢ 4 2 ⎥ ⎢ \n",
|
||
" - ─ - ───────── + ─ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4 2 4 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅\n",
|
||
" ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ───────────── - ───\n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎢ ⎝ 2 2⎠ √2⋅(-1 + ⅈ)⎥ ⎢ 8 \n",
|
||
" ⅈ⋅⎜- ─ + ─⎟⎥ ⎢────────────── - ───────────⎥ ⎢ \n",
|
||
" 1 ⅈ ⎝ 2 2⎠⎥ ⎣ 2 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"- ─ + ─ - ───────────⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" 4 4 2 ⎦ ⎢ ⎝ 2 2⎠ √2⋅ⅈ\n",
|
||
" ⎢────────────── + ────\n",
|
||
" ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ \n",
|
||
" √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2\n",
|
||
"ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎥ ⎢ ⎝2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) \n",
|
||
"────────── + ────────── + ─────────── ⎥ ⎢ - ──────────── + ───────────── + ──\n",
|
||
" 8 4 8 ⎥ ⎢ 4 8 \n",
|
||
" ⎥ ⎢ \n",
|
||
" 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ √2⋅⎜- ─ + ─⎟ \n",
|
||
" 2 2⎠ √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅(-\n",
|
||
"─────── + ─────────── - ──────────────⎥ ⎢───────────── + ──────────── + ─────\n",
|
||
"4 8 4 ⎥ ⎢ 8 4 \n",
|
||
" ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ \n",
|
||
"(-1 + ⅈ) ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅ⅈ⋅(\n",
|
||
"──────── + ────────── + ──────────── ⎥ ⎢ - ─────────── - ────────── - ──────\n",
|
||
" 8 4 4 ⎥ ⎢ 8 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" √2⋅⎜- ─ + ─⎟⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ \n",
|
||
"⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ √2⋅(\n",
|
||
"───────── - ─────────── + ────────────⎥ ⎢────────────── - ──────────── - ────\n",
|
||
" 8 8 4 ⎦ ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎡ \n",
|
||
" ⎛1 ⅈ⎞ ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
"⋅⎜─ - ─⎟ ⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟\n",
|
||
" ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠\n",
|
||
"──────── + ─────────── ⎥ ⎢ ────────────────── + ─────────────── + ───────\n",
|
||
" 4 8 ⎥ ⎢ 4 2 2 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)\n",
|
||
"1 + ⅈ) ⎝ 2 2⎠⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"────── - ──────────────⎥ ⎢───────────────── + ────────────────── + ──────────\n",
|
||
"8 4 ⎥ ⎢ 2 4 4 \n",
|
||
" ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
"-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟\n",
|
||
"─────── + ──────────── ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠\n",
|
||
"8 4 ⎥ ⎢ ────────────────── + ─────────────── + ───────\n",
|
||
" ⎥ ⎢ 4 2 2 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"-1 + ⅈ) √2⋅ⅈ⋅(-1 + ⅈ)⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)\n",
|
||
"─────── - ─────────────⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" 8 8 ⎦ ⎢───────────────── + ────────────────── + ──────────\n",
|
||
" ⎣ 2 4 4 \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
"2 ⎤ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ \n",
|
||
" ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ \n",
|
||
" ⎝2 2⎠ ⎥ \n",
|
||
"─ + ────────────────── ⎥ \n",
|
||
" 4 ⎥ ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ 1 ⅈ⋅(-1 + ⅈ\n",
|
||
" ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ─ + ─────────\n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ 4 4 \n",
|
||
"⋅⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ───────────── + ────────── ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 4 2 ⎥ ⎢ 1 ⅈ⋅(-1 + \n",
|
||
"──────── + ─────────────────⎥ ⎢ ⎥ ⎢- ─ + ────────\n",
|
||
" 2 ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ 4 4 \n",
|
||
" ⎥, ⎢ √2⋅⎜- ─ + ─⎟⎥, ⎢ \n",
|
||
"2 ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ\n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢───────────── + ────────────⎥ ⎢ ─ + ─────────\n",
|
||
" ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ ⎢ 4 2 ⎥ ⎢ 4 4 \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"─ + ────────────────── ⎥ ⎢ 0 ⎥ ⎢ 1 ⅈ⋅(-1 + \n",
|
||
" 4 ⎥ ⎢ ⎥ ⎢- ─ + ────────\n",
|
||
" ⎥ ⎣ 0 ⎦ ⎣ 4 4 \n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ \n",
|
||
"⋅⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ \n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"──────── + ─────────────────⎥ \n",
|
||
" 2 ⎦ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎡ \n",
|
||
" ⎢ \n",
|
||
" ⎢ ⅈ⋅(-1 +\n",
|
||
" ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ ⎢ \n",
|
||
" ⎢ ─ + ────────── - ─ ⎥ ⎢ ───────\n",
|
||
") ⅈ ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ ⎢ 4 4 4 ⎥ ⎢ \n",
|
||
"─ - ─ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4 ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1\n",
|
||
" ⎥ ⎢ ───────────── + ────────── ⎥ ⎢- ─ + ────────── + ─⎥ ⎢⎜- ─ + ─⎟⋅⎜─\n",
|
||
"ⅈ) ⅈ⎥ ⎢ 4 2 ⎥ ⎢ 4 4 4⎥ ⎢⎝ 2 2⎠ ⎝2\n",
|
||
"── + ─⎥ ⎢ ⎥ ⎢ ⎥ ⎢────────────\n",
|
||
" 4⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ 2 \n",
|
||
" ⎥, ⎢ √2⋅⎜- ─ + ─⎟⎥, ⎢ ⅈ⋅⎜─ - ─⎟ ⎥, ⎢ \n",
|
||
") ⅈ ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ 1 ⅈ ⎝2 2⎠ ⎥ ⎢⎛1 ⅈ⎞ ⎛1 \n",
|
||
"─ - ─ ⎥ ⎢───────────── + ────────────⎥ ⎢ ─ - ─ + ───────── ⎥ ⎢⎜─ - ─⎟⋅⎜─ +\n",
|
||
" 4 ⎥ ⎢ 4 2 ⎥ ⎢ 4 4 2 ⎥ ⎢⎝2 2⎠ ⎝2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢────────────\n",
|
||
"ⅈ) ⅈ⎥ ⎢ 0 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 2 \n",
|
||
"── + ─⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" 4⎦ ⎣ 0 ⎦ ⎢1 ⎝ 2 2⎠ ⅈ ⎥ ⎢ \n",
|
||
" ⎢─ + ─────────── - ─ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎣4 2 4 ⎦ ⎢ ⎜- ─ + ─⎟⋅\n",
|
||
" ⎢ ⎝ 2 2⎠ \n",
|
||
" ⎢ ──────────\n",
|
||
" ⎣ 2 \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
" ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎡ \n",
|
||
"─────────── + ─────────────── + ──────── + ────────────────── ⎥ ⎢ \n",
|
||
" 4 2 2 4 ⎥ ⎢ 1 ⅈ \n",
|
||
" ⎥ ⎢ ─ - ─ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 4 4 \n",
|
||
" + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛\n",
|
||
"───── + ────────────────── + ────────────────── + ─────────────────⎥ ⎢ ⅈ⋅⎜\n",
|
||
" 4 4 2 ⎥ ⎢1 ⎝\n",
|
||
" ⎥, ⎢─ + ───\n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢4 \n",
|
||
" ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ \n",
|
||
" 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 1 ⅈ⋅\n",
|
||
"─── + ──────────────────── + ────────────────── + ─────────────────⎥ ⎢ ─ + ──\n",
|
||
" 4 4 2 ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢ 1 ⅈ\n",
|
||
"⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢- ─ + ─\n",
|
||
"⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ ⎜- ─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ ⎣ 4 \n",
|
||
"⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"─────── + ──────────────────── + ────────── + ────────────────── ⎥ \n",
|
||
" 4 2 4 ⎦ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ \n",
|
||
" ⎛1 ⅈ⎞ ⎤ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ───────────── - ─────────── + ────────── + ──────────── \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ 8 8 4 4 \n",
|
||
"+ ───────── ⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ \n",
|
||
" 1 ⅈ⎞ ⎥ ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠ \n",
|
||
"- ─ + ─⎟ ⎥ ⎢ ────────────── + ───────────── - ─────────── + ──────────── \n",
|
||
" 2 2⎠ ⅈ ⎥ ⎢ 4 8 8 4 \n",
|
||
"──────── - ─ ⎥, ⎢ \n",
|
||
" 2 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ \n",
|
||
"(-1 + ⅈ) ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ √2⋅(-1 + ⅈ) √2⋅ⅈ⋅(-1 + ⅈ) \n",
|
||
"──────── - ─ ⎥ ⎢ - ──────────── - ────────── + ─────────── - ───────────── \n",
|
||
" 4 4 ⎥ ⎢ 4 4 8 8 \n",
|
||
" ⎥ ⎢ \n",
|
||
"⋅(-1 + ⅈ) ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
"───────── + ─⎥ ⎢ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" 4 4⎦ ⎢ ⎝ 2 2⎠ √2⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ)\n",
|
||
" ⎢- ──────────── + ─────────── - ────────────── - ─────────────\n",
|
||
" ⎣ 4 8 4 8 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎡ 2 \n",
|
||
"⎤ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟ \n",
|
||
"⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ \n",
|
||
"⎥ ⎢ ────────────────── + ──────────────────── + ──────── + ───────────────── \n",
|
||
"⎥ ⎢ 4 4 2 2 \n",
|
||
"⎥ ⎢ \n",
|
||
"⎥ ⎢ 2 \n",
|
||
"⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
"⎥ ⎢ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ ⎜- ─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟\n",
|
||
"⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠\n",
|
||
"⎥ ⎢────────────────── + ──────────────────── + ────────── + ─────────────────\n",
|
||
"⎥, ⎢ 4 4 2 2 \n",
|
||
"⎥ ⎢ \n",
|
||
"⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ \n",
|
||
"⎥ ⎢ ⎝ 2 2⎠ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"⎥ ⎢ ──────────────────── + ⎜- ─ + ─⎟⋅⎜─ - ─⎟ \n",
|
||
"⎥ ⎢ 2 ⎝ 2 2⎠ ⎝2 2⎠ \n",
|
||
"⎥ ⎢ \n",
|
||
"⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ 2 \n",
|
||
"⎥ ⎢ ⎝ 2 2⎠ ⎛ 1 ⅈ⎞ \n",
|
||
"⎦ ⎢ ──────────────────── + ⎜- ─ + ─⎟ \n",
|
||
" ⎣ 2 ⎝ 2 2⎠ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
"⎤ ⎡ \n",
|
||
"⎥ ⎢ \n",
|
||
"⎥ ⎢ ⅈ⋅\n",
|
||
"⎥ ⎢ \n",
|
||
"⎥ ⎢ ──\n",
|
||
"⎥ ⎡ 1 ⅈ ⅈ⋅(-1 + ⅈ)⎤ ⎡ 0 ⎤ ⎢ \n",
|
||
"⎥ ⎢- ─ + ─ - ──────────⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎥ ⎢ 4 4 4 ⎥ ⎢ 0 ⎥ ⎢ ⎛1 ⅈ⎞\n",
|
||
"⎥ ⎢ ⎥ ⎢ ⎥ ⎢ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟\n",
|
||
"⎥ ⎢ 1 ⅈ ⅈ⋅(-1 + ⅈ) ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝2 2⎠\n",
|
||
"⎥ ⎢ ─ - ─ - ────────── ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢──────────────────\n",
|
||
"⎥ ⎢ 4 4 4 ⎥ ⎢ ⎝2 2⎠ √2⋅(-1 + ⅈ)⎥ ⎢ 4 \n",
|
||
"⎥, ⎢ ⎥, ⎢- ──────────── + ───────────⎥, ⎢ \n",
|
||
"⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢ 2 4 ⎥ ⎢ ⎛1 ⅈ⎞\n",
|
||
"⎥ ⎢ ─ + ────────── - ─ ⎥ ⎢ ⎥ ⎢ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟\n",
|
||
"⎥ ⎢ 4 4 4 ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ ⎝2 2⎠\n",
|
||
"⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢──────────────────\n",
|
||
"⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢√2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ 4 \n",
|
||
"⎥ ⎢- ─ + ────────── + ─⎥ ⎢─────────── - ──────────────⎥ ⎢ \n",
|
||
"⎥ ⎣ 4 4 4⎦ ⎣ 4 2 ⎦ ⎢ \n",
|
||
"⎥ ⎢ \n",
|
||
"⎥ ⎢ ⅈ⋅(-\n",
|
||
"⎥ ⎢ \n",
|
||
"⎥ ⎢ ────\n",
|
||
"⎦ ⎣ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟ 2 ⎥ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ (-1 + ⅈ) ⎥ \n",
|
||
"──────────────── + ──────── - ───────── ⎥ \n",
|
||
" 2 2 8 ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡ √2 ⎤ ⎡√2⎤\n",
|
||
" ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ 2 ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ── ⎥ ⎢──⎥\n",
|
||
" ⎝ 2 2⎠ (-1 + ⅈ) ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎢2 ⎥\n",
|
||
" + ──────────────────── - ───────── + ─────────────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
" 4 8 2 ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢0 ⎥\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥\n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢0 ⎥\n",
|
||
" ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ 2 ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
" ⎝ 2 2⎠ (-1 + ⅈ) ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎣-1/2⎦ ⎢√2⋅ⅈ⎥ ⎢√2⎥\n",
|
||
" + ──────────────────── - ───────── + ─────────────────⎥ ⎢────⎥ ⎢──⎥\n",
|
||
" 4 8 2 ⎥ ⎣ 2 ⎦ ⎣2 ⎦\n",
|
||
" ⎥ \n",
|
||
" 2 ⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ \n",
|
||
"1 + ⅈ)⋅⎜- ─ + ─⎟ ⎜- ─ + ─⎟ 2 ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠ (-1 + ⅈ) ⎥ \n",
|
||
"──────────────── + ────────── - ───────── ⎥ \n",
|
||
" 2 2 8 ⎦ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1\n",
|
||
" ⎢√2⋅⎜─\n",
|
||
" ⎢ ⎝2\n",
|
||
" ⎢─────\n",
|
||
" ⎢ 2\n",
|
||
" ⎢ \n",
|
||
" ⎡1/2⎤ ⎡1/2⎤ ⎡ √2 ⎤ ⎡1/2⎤ ⎡ √2 ⎤ ⎡1/2 ⎤ ⎡1/2⎤ ⎡1/2 ⎤ ⎢ ⎛1\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢√2⋅⎜─\n",
|
||
" ⎢1/2⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢-ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ ⎝2\n",
|
||
" ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢───⎥ ⎢─── ⎥ ⎢─────\n",
|
||
" ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2\n",
|
||
", ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎢ 2 ⎥ ⎢1/2⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢ ⅈ ⎥ ⎢ ⎛1\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢√2⋅⎜─\n",
|
||
" ⎢-ⅈ ⎥ ⎢-ⅈ ⎥ ⎢-√2 ⎥ ⎢ 2 ⎥ ⎣1/2 ⎦ ⎢-√2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎝2\n",
|
||
" ⎢───⎥ ⎢───⎥ ⎢────⎥ ⎢ ⎥ ⎢──────⎥ ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢─────\n",
|
||
" ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣1/2⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣-1/2⎦ ⎢ 2\n",
|
||
" ⎢ \n",
|
||
" ⎢ ⎛1\n",
|
||
" ⎢√2⋅⎜─\n",
|
||
" ⎢ ⎝2\n",
|
||
" ⎢─────\n",
|
||
" ⎣ 2\n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞⎤ ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 \n",
|
||
" + ─⎟⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ -\n",
|
||
" 2⎠⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 \n",
|
||
"─────⎥ ⎢ ────────── ⎥ ⎢ ───────\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ⎞⎥ ⎡0 ⎤ ⎡1/2⎤ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡ 0 ⎤ ⎡1/2 ⎤ ⎢ ⎛ 1 \n",
|
||
" - ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢√2⋅⎜- ─ \n",
|
||
" 2⎠⎥ ⎡1/2 ⎤ ⎢√2⎥ ⎢1/2⎥ ⎢ √2 ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢√2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢ ⎝ 2 \n",
|
||
"─────⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ────────── ⎥ ⎢────⎥ ⎢ ─ ⎥ ⎢────────\n",
|
||
" ⎥ ⎢1/2 ⎥ ⎢2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢───⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ⎞⎥ ⎢-1/2⎥ ⎢√2⎥ ⎢ 2 ⎥ ⎢√2⋅ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢ ⎛ 1 \n",
|
||
" - ─⎟⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥ ⎢────⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ ⎢ ── ⎥ ⎢─── ⎥ ⎢√2⋅⎜- ─ \n",
|
||
" 2⎠⎥ ⎣1/2 ⎦ ⎢2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎝ 2 2⎠⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⎝ 2 \n",
|
||
"─────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢────────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢────────\n",
|
||
" ⎥ ⎣0 ⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎢ 2 ⎥ ⎣ 0 ⎦ ⎣-1/2⎦ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛ 1 \n",
|
||
" + ─⎟⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢√2⋅⎜- ─ \n",
|
||
" 2⎠⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝ 2 \n",
|
||
"─────⎥ ⎢ ────────── ⎥ ⎢────────\n",
|
||
" ⎦ ⎣ 2 ⎦ ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎤ \n",
|
||
" ─⎟ ⎥ \n",
|
||
" 2⎠ ⎥ ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
"─── ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎥ ⎡ √2 √\n",
|
||
" ⎥ ⎢ ────────── ⎥ ⎢ ── + ─\n",
|
||
" ⅈ⎞⎥ ⎡ 0 ⎤ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎡ √2 ⎤ ⎡1/2⎤ ⎡1/2⎤ ⎡ √2 ⎤ ⎢ 4 \n",
|
||
"+ ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ \n",
|
||
" 2⎠⎥ ⎢-√2 ⎥ ⎢-1/2⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ)⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √\n",
|
||
"────⎥ ⎢────⎥ ⎢ ⎥ ⎢─────────────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ── + ─\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 4 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢─── ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ⎞⎥ ⎢ √2 ⎥ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢1/2⎥ ⎢ 0 ⎥ ⎢ √2 √\n",
|
||
"+ ─⎟⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢√2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── - ─\n",
|
||
" 2⎠⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢-√2 ⎥ ⎢ 4 \n",
|
||
"────⎥ ⎢ ⎥ ⎢─── ⎥ ⎢──────────── ⎥ ⎢────⎥ ⎢ ⎥ ⎢───⎥ ⎢────⎥ ⎢ \n",
|
||
" ⎥ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎢ 2 ⎥ ⎣ 2 ⎦ ⎣1/2⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢ √2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢- ── + \n",
|
||
" ⅈ⎞⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ)⎥ ⎣ 4 \n",
|
||
"+ ─⎟⎥ ⎢─────────────⎥ \n",
|
||
" 2⎠⎥ ⎣ 4 ⎦ \n",
|
||
"────⎥ \n",
|
||
" ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2\n",
|
||
"─── ⎥ ⎢ ── + ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──\n",
|
||
"4 ⎥ ⎡1/2 ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡1/2 ⎤ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎢ 4 4\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √\n",
|
||
"─── ⎥ ⎢ ─ ⎥ ⎢ ── + ──── ⎥ ⎢────⎥ ⎢ ─ ⎥ ⎢────⎥ ⎢- ── + ────⎥ ⎢- ── + ─\n",
|
||
"4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √\n",
|
||
"─── ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ── ⎥ ⎢─── ⎥ ⎢────⎥ ⎢ ── + ──── ⎥ ⎢- ── + ─\n",
|
||
"4 ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"√2⋅ⅈ⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎣-1/2⎦ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √\n",
|
||
"────⎥ ⎢- ── - ────⎥ ⎢ ── + ──── ⎥ ⎢- ── + ─\n",
|
||
" 4 ⎦ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1/2\n",
|
||
"⋅ⅈ ⎤ ⎡ 1/2 ⎤ ⎢ \n",
|
||
"── ⎥ ⎢ ⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡ √2 ⎤ ⎡1/2⎤ ⎡√2⎤ ⎡1/2 ⎤ ⎢ ⅈ⋅⎜─ + ─⎟ \n",
|
||
" ⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ⎝2 2⎠ \n",
|
||
"2⋅ⅈ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢2 ⎥ ⎢-ⅈ ⎥ ⎢- ───────── +\n",
|
||
"───⎥ ⎢- ───────── + ─────────⎥ ⎢ ⎥ ⎢───⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ 2 \n",
|
||
"4 ⎥ ⎢ 2 2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢0 ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⅈ \n",
|
||
"2⋅ⅈ⎥ ⎢ 1/2 ⎥ ⎢ 0 ⎥ ⎢1/2⎥ ⎢0 ⎥ ⎢ ⅈ ⎥ ⎢ ─ \n",
|
||
"───⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ 2 \n",
|
||
"4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢-√2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢√2⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢──────⎥ ⎢ ─ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"2⋅ⅈ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣2 ⎦ ⎣-1/2⎦ ⎢ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
"───⎥ ⎢- ───────── + ─────────⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"4 ⎦ ⎣ 2 2 ⎦ ⎢─────────── -\n",
|
||
" ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎤ \n",
|
||
" ⎥ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎛1 ⅈ⎞⎥ ⎢ ── + ──── ⎥ ⎡ 0 ⎤ \n",
|
||
" ⅈ⋅⎜─ - ─⎟⎥ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎢ ⎥ ⎡-1/2⎤ ⎡ 0 ⎤\n",
|
||
" ⎝2 2⎠⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
" ─────────⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⅈ ⎥ ⎢ √2⋅ⅈ ⎥\n",
|
||
" 2 ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ ─ ⎥ ⎢ ──── ⎥\n",
|
||
" ⎥ ⎢1/2⎥ ⎢ 4 4 ⎥ ⎢───────── - ───────────⎥ ⎢ 2 ⎥ ⎢ 2 ⎥\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ 2 2 ⎥, ⎢ ⎥, ⎢ ⎥\n",
|
||
" ⎥ ⎢1/2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎥ ⎢1/2 ⎥ ⎢-√2⋅ⅈ ⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ 1 ⅈ ⎥ ⎢ ⎥ ⎢──────⎥\n",
|
||
" ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ - ─ + ─ ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥\n",
|
||
" ⎛1 ⅈ⎞⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ 2 2 ⎥ ⎢ ─ ⎥ ⎢ ⎥\n",
|
||
" ⅈ⋅⎜─ + ─⎟⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎥ ⎣ 2 ⎦ ⎣ 0 ⎦\n",
|
||
" ⎝2 2⎠⎥ ⎢ ── + ──── ⎥ ⎣ 0 ⎦ \n",
|
||
" ─────────⎥ ⎣ 4 4 ⎦ \n",
|
||
" 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ \n",
|
||
" ⎢ ─ + ────────── - ─ ⎥ \n",
|
||
" ⎢ 4 4 4 ⎥ ⎡√2 √2⋅ⅈ⎤ ⎡\n",
|
||
" ⎢ ⎥ ⎢── + ────⎥ ⎢\n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎥ ⎡√2⎤ ⎡1/2⎤ ⎡ √2 ⎤ ⎢4 4 ⎥ ⎢\n",
|
||
" ⎢ ⅈ⋅⎜─ - ─⎟ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎢ 1 ⅈ ⎝2 2⎠ ⎥ ⎢2 ⎥ ⎢1/2⎥ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎡1/2 ⎤ ⎢\n",
|
||
" ⎢ - ─ + ─ + ───────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢── - ────⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎢ 4 4 2 ⎥ ⎢0 ⎥ ⎢ ⅈ ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢4 4 ⎥ ⎢1/2 ⎥ ⎢\n",
|
||
", ⎢ ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢\n",
|
||
" ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢0 ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢-1/2⎥ ⎢\n",
|
||
" ⎢- ─ + ────────── + ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢── - ────⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎢ 4 4 4 ⎥ ⎢√2⎥ ⎢-ⅈ ⎥ ⎣-1/2⎦ ⎢√2⋅ⅈ⎥ ⎢4 4 ⎥ ⎣1/2 ⎦ ⎢\n",
|
||
" ⎢ ⎥ ⎢──⎥ ⎢───⎥ ⎢────⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎣2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢√2 √2⋅ⅈ⎥ ⎢\n",
|
||
" ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢── + ────⎥ ⎢\n",
|
||
" ⎢ 1 ⎝ 2 2⎠ ⅈ⎥ ⎣4 4 ⎦ ⎣\n",
|
||
" ⎢- ─ + ─────────── + ─⎥ \n",
|
||
" ⎣ 4 2 4⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" √2 √2⋅ⅈ ⎤ ⎡√2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ── + ──── ⎥ ⎢── - ────⎥ ⎢ ── - ──── ⎥ \n",
|
||
" 4 4 ⎥ ⎡0 ⎤ ⎡1/2⎤ ⎡ 0 ⎤ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎡1/2⎤ ⎡ √2 ⎤ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ \n",
|
||
" √2 √2⋅ⅈ ⎥ ⎢√2⎥ ⎢1/2⎥ ⎢ √2 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ \n",
|
||
" ── - ──── ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢── + ────⎥ ⎢ ── + ──── ⎥ ⎢ ─ ⎥ ⎢ ⎥ \n",
|
||
" 4 4 ⎥ ⎢2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ \n",
|
||
" ⎥, ⎢ ⎥, ⎢───⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, \n",
|
||
" √2 √2⋅ⅈ ⎥ ⎢√2⎥ ⎢ 2 ⎥ ⎢√2⋅ⅈ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢1/2⎥ ⎢ 0 ⎥ \n",
|
||
" ── + ──── ⎥ ⎢──⎥ ⎢ ⎥ ⎢────⎥ ⎢── + ────⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" 4 4 ⎥ ⎢2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎢-ⅈ ⎥ ⎢-√2 ⎥ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢───⎥ ⎢────⎥ \n",
|
||
" √2 √2⋅ⅈ⎥ ⎣0 ⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ \n",
|
||
"- ── + ────⎥ ⎢── - ────⎥ ⎢ ── + ──── ⎥ \n",
|
||
" 4 4 ⎦ ⎣4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢ ── + ──── ⎥ \n",
|
||
" ⎡ √2 ⎤ ⎡1/2 ⎤ ⎡1/2 ⎤ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡ \n",
|
||
" ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎡1/2 ⎤ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 1 ⅈ ⎥ ⎡-1/2⎤ ⎢ \n",
|
||
"⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ─ - ─ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎢-1/2⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 2 2 ⎥ ⎢1/2 ⎥ ⎢ \n",
|
||
"⎢ ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢───⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎢1/2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢1/2 ⎥ ⎢-√\n",
|
||
"⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢- ─ + ─⎥ ⎢ ⎥ ⎢──\n",
|
||
"⎣1/2 ⎦ ⎢-√2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢ 4 4 ⎥ ⎢ 2 2⎥ ⎣1/2 ⎦ ⎢ \n",
|
||
" ⎢──────⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣-1/2⎦ ⎣1/2⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 0 ⎦ ⎣ \n",
|
||
" ⎢ ── - ──── ⎥ \n",
|
||
" ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ \n",
|
||
" ⎢ ─ + ────────── - ─ ⎥ \n",
|
||
"0 ⎤ ⎢ 4 4 4 ⎥ ⎡1/2⎤ ⎡ √2 ⎤ ⎡ √2 ⎤ ⎡1/2⎤ ⎡ √2 ⎤ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ── ⎥ \n",
|
||
"√2 ⎥ ⎢ 1 ⅈ ⅈ⋅(-1 + ⅈ) ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎡1/2 ⎤ ⎢ 2 ⎥ \n",
|
||
"── ⎥ ⎢ ─ - ─ - ────────── ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
"2 ⎥ ⎢ 4 4 4 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥,\n",
|
||
"2⋅ⅈ ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢1/2⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ \n",
|
||
"────⎥ ⎢- ─ + ────────── + ─⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
"2 ⎥ ⎢ 4 4 4⎥ ⎢-ⅈ ⎥ ⎢-√2 ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎣1/2 ⎦ ⎢-√2⋅ⅈ ⎥ \n",
|
||
" ⎥ ⎢ ⎥ ⎢───⎥ ⎢────⎥ ⎢────⎥ ⎢ ⎥ ⎢──────⎥ \n",
|
||
"0 ⎦ ⎢ 1 ⅈ ⅈ⋅(-1 + ⅈ)⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣1/2⎦ ⎣ 2 ⎦ \n",
|
||
" ⎢- ─ + ─ - ──────────⎥ \n",
|
||
" ⎣ 4 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜─ + ─⎟ ⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎥ \n",
|
||
" ⎢ ────────── ⎥ \n",
|
||
" ⎢ 2 ⎥ \n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎡1/2 ⎤ ⎡1/2⎤ ⎡√2⎤ ⎡1/2 ⎤ ⎡1/2⎤ ⎢ ⎛1 ⅈ⎞⎥ ⎡1/2 ⎤ ⎡ 0 ⎤ ⎡\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ⎥ ⎢√2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎢-1/2⎥ ⎢-ⅈ ⎥ ⎢2 ⎥ ⎢-ⅈ ⎥ ⎡1/2 ⎤ ⎢1/2⎥ ⎢ ⎝2 2⎠⎥ ⎢ ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢\n",
|
||
" ⎢ ⎥ ⎢───⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢────────────⎥ ⎢ ─ ⎥ ⎢────⎥ ⎢\n",
|
||
" ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢0 ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢\n",
|
||
" ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢\n",
|
||
" ⎢ 2 ⎥ ⎢1/2⎥ ⎢0 ⎥ ⎢ ⅈ ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢-1/2⎥ ⎢ √2 ⎥ ⎢\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢\n",
|
||
" ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢√2⎥ ⎢ 2 ⎥ ⎣-1/2⎦ ⎢-ⅈ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢\n",
|
||
" ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢──⎥ ⎢ ⎥ ⎢───⎥ ⎢ ────────── ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣2 ⎦ ⎣-1/2⎦ ⎣ 2 ⎦ ⎢ 2 ⎥ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎣\n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎢ ⎛1 ⅈ⎞⎥ \n",
|
||
" ⎢√2⋅ⅈ⋅⎜─ + ─⎟⎥ \n",
|
||
" ⎢ ⎝2 2⎠⎥ \n",
|
||
" ⎢────────────⎥ \n",
|
||
" ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎥ \n",
|
||
" ⎢ ────────── ⎥ ⎢ ────────── ⎥ \n",
|
||
" ⎢ 2 ⎥ ⎢ 2 ⎥ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ \n",
|
||
"1/2 ⎤ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞⎥ ⎡ 0 ⎤ ⎡1/2 ⎤ ⎢ ⎛ 1 ⅈ⎞⎥ ⎡ 0 ⎤ ⎡1/\n",
|
||
" ⎥ ⎢ ⎥ ⎢√2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢ ⎝2 2⎠⎥ ⎢-√2 ⎥ ⎢-1/2⎥ ⎢ ⎝ 2 2⎠⎥ ⎢-√2⋅ⅈ ⎥ ⎢-ⅈ\n",
|
||
" ─ ⎥ ⎢────⎥ ⎢────────────⎥ ⎢────⎥ ⎢ ⎥ ⎢──────────────⎥ ⎢──────⎥ ⎢──\n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢─── ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"-ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ √2 ⎥ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ √2 ⎥ ⎢-ⅈ\n",
|
||
"─── ⎥ ⎢────⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ── ⎥ ⎢──\n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ ⎝ 2 2⎠⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ 2 ⎥ ⎢ 2\n",
|
||
" ⎥ ⎢ ⎥ ⎢────────────⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ──────────── ⎥ ⎢ ⎥ ⎢ \n",
|
||
"-1/2⎦ ⎣ 0 ⎦ ⎢ 2 ⎥ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎢ 2 ⎥ ⎣ 0 ⎦ ⎣1/\n",
|
||
" ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎢ ⎛1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞⎥ \n",
|
||
" ⎢√2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟⎥ \n",
|
||
" ⎢ ⎝2 2⎠⎥ ⎢ ⎝ 2 2⎠⎥ \n",
|
||
" ⎢────────────⎥ ⎢──────────────⎥ \n",
|
||
" ⎣ 2 ⎦ ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎡√2 √2⋅ⅈ⎤ ⎡ √2 \n",
|
||
" ⎢ ────────── ⎥ ⎢ ── + ──── ⎥ ⎢── + ────⎥ ⎢ ── \n",
|
||
"2⎤ ⎢ 2 ⎥ ⎡1/2⎤ ⎢ 4 4 ⎥ ⎢4 4 ⎥ ⎡1 ⅈ⎤ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢─ + ─⎥ ⎢ \n",
|
||
" ⎥ ⎢-√2⋅(-1 + ⅈ) ⎥ ⎢1/2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢√2 √2⋅ⅈ⎥ ⎡1/2 ⎤ ⎢2 2⎥ ⎢ √2 \n",
|
||
"─⎥ ⎢─────────────⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢── - ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── \n",
|
||
" ⎥ ⎢ 4 ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢4 4 ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ ⎢ √2\n",
|
||
"─⎥ ⎢√2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢── - ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ──\n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢4 4 ⎥ ⎣1/2 ⎦ ⎢1 ⅈ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢──────────── ⎥ ⎢───⎥ ⎢ ⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢ \n",
|
||
"2⎦ ⎢ 2 ⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢√2 √2⋅ⅈ⎥ ⎣2 2⎦ ⎢ √2\n",
|
||
" ⎢ ⎥ ⎢- ── + ────⎥ ⎢── + ────⎥ ⎢- ──\n",
|
||
" ⎢-√2⋅(-1 + ⅈ) ⎥ ⎣ 4 4 ⎦ ⎣4 4 ⎦ ⎣ 4 \n",
|
||
" ⎢─────────────⎥ \n",
|
||
" ⎣ 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1\n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─\n",
|
||
" ⎢ ⎝2\n",
|
||
" ⎢- ───────\n",
|
||
" √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ ⅈ ⎤ ⎢ 4 \n",
|
||
"+ ──── ⎥ ⎢ ── + ──── ⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" 4 ⎥ ⎡1 ⅈ⎤ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎢ ⎛1 \n",
|
||
" ⎥ ⎢─ + ─⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - \n",
|
||
" √2⋅ⅈ ⎥ ⎢2 2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢1 ⅈ⎥ ⎢ 1 ⅈ ⎥ ⎢ ⎝2 \n",
|
||
"- ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢───⎥ ⎢─ - ─⎥ ⎢ ─ - ─ ⎥ ⎢ ────────\n",
|
||
" 4 ⎥ ⎢ 0 ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢2 2⎥ ⎢ 2 2 ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢───⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢1 ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎛1 \n",
|
||
" + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ ─ ⎥ ⎢─ + ─⎥ ⎢- ─ + ─⎥ ⎢ √2⋅⎜─ - \n",
|
||
" 4 ⎥ ⎢1 ⅈ⎥ ⎢1/2⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢2 2⎥ ⎢ 2 2⎥ ⎢ ⎝2 \n",
|
||
" ⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ────────\n",
|
||
" √2⋅ⅈ⎥ ⎣2 2⎦ ⎣1/2⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎢ 4 \n",
|
||
" - ────⎥ ⎢ ── - ──── ⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" 4 ⎦ ⎣ 4 4 ⎦ ⎣ 2 ⎦ ⎢ ⎛1\n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─\n",
|
||
" ⎢ ⎝2\n",
|
||
" ⎢- ───────\n",
|
||
" ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
" - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"───── + ────────── + ──────────── + ──────────⎥ \n",
|
||
" 4 4 4 ⎥ ⎡√2 √2⋅ⅈ⎤ ⎡\n",
|
||
" ⎥ ⎢── - ────⎥ ⎢\n",
|
||
"ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎡1/2⎤ ⎢4 4 ⎥ ⎢\n",
|
||
"─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
"2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢1/2⎥ ⎢√2 √2⋅ⅈ⎥ ⎡1/2 ⎤ ⎢\n",
|
||
"── - ──────────── + ────────── + ──────────── ⎥ ⎢ ⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢\n",
|
||
" 4 4 4 ⎥ ⎢-ⅈ ⎥ ⎢4 4 ⎥ ⎢1/2 ⎥ ⎢\n",
|
||
" ⎥, ⎢───⎥, ⎢ ⎥, ⎢ ⎥, ⎢\n",
|
||
"ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 2 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢1/2 ⎥ ⎢\n",
|
||
"─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢\n",
|
||
"2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⅈ ⎥ ⎢4 4 ⎥ ⎣-1/2⎦ ⎢\n",
|
||
"── - ──────────── + ────────── + ──────────── ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢\n",
|
||
" 4 4 4 ⎥ ⎣ 2 ⎦ ⎢√2 √2⋅ⅈ⎥ ⎢\n",
|
||
" ⎥ ⎢── - ────⎥ ⎢\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣4 4 ⎦ ⎣\n",
|
||
" - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"───── + ────────── + ──────────── + ──────────⎥ \n",
|
||
" 4 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
" ⎢ ────────── - ──────────── + ────────── + ──────────── ⎥ \n",
|
||
" √2 √2⋅ⅈ ⎤ ⎢ 4 4 4 4 ⎥ ⎡ √\n",
|
||
" ── - ──── ⎥ ⎢ ⎥ ⎢ ─\n",
|
||
" 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4\n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ \n",
|
||
" √2 √2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
" ── + ──── ⎥ ⎢ - ──────────── + ────────── + ──────────── + ────────── ⎥ ⎢- \n",
|
||
" 4 4 ⎥ ⎢ 4 4 4 4 ⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ \n",
|
||
" √2 √2⋅ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ √\n",
|
||
"- ── + ────⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ─\n",
|
||
" 4 4 ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 4\n",
|
||
" ⎥ ⎢────────────── - ──────────── + ──────────── + ──────────⎥ ⎢ \n",
|
||
" √2 √2⋅ⅈ ⎥ ⎢ 4 4 4 4 ⎥ ⎢ √\n",
|
||
" ── + ──── ⎥ ⎢ ⎥ ⎢ ─\n",
|
||
" 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎣ 4\n",
|
||
" ⎢√2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ \n",
|
||
" ⎢──────────── + ──────────── + ────────── - ──────────────⎥ \n",
|
||
" ⎣ 4 4 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 \n",
|
||
" ⎢ ────────── + ──────────── - ────────────── + ────────\n",
|
||
"2 √2⋅ⅈ ⎤ ⎢ 4 4 4 4 \n",
|
||
"─ + ──── ⎥ ⎢ \n",
|
||
" 4 ⎥ ⎡ 1 ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1\n",
|
||
" ⎥ ⎢ ─ + ─ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─\n",
|
||
"√2 √2⋅ⅈ⎥ ⎢ 2 2 ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2\n",
|
||
"── + ────⎥ ⎢ ⎥ ⎢- ──────────── + ────────────── + ────────── + ───────\n",
|
||
"4 4 ⎥ ⎢ 0 ⎥ ⎢ 4 4 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ \n",
|
||
"2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"─ + ──── ⎥ ⎢ ⎥ ⎢ √2⋅⎜- ─ + ─⎟ \n",
|
||
" 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
" ⎥ ⎢- ─ - ─⎥ ⎢ ──────────── \n",
|
||
"2 √2⋅ⅈ ⎥ ⎣ 2 2⎦ ⎢ 2 \n",
|
||
"─ - ──── ⎥ ⎢ \n",
|
||
" 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅⎜- ─ + ─⎟ \n",
|
||
" ⎢ ⎝ 2 2⎠ \n",
|
||
" ⎢ ──────────── \n",
|
||
" ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ \n",
|
||
"- ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2\n",
|
||
" 2⎠ ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) \n",
|
||
"──── ⎥ ⎢ ───────────── + ────────── + ─────────── + ──\n",
|
||
" ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎡ ⅈ ⎤ ⎢ 8 4 8 \n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" ⅈ⎞⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ \n",
|
||
" 2⎠⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢-ⅈ ⎥ ⎢ ⎝2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) \n",
|
||
"─────⎥ ⎢- ── - ────⎥ ⎢───⎥ ⎢ - ──────────── + ───────────── - ─────────── +\n",
|
||
" ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 8 8 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢───⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ \n",
|
||
" ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢────────────── + ───────────── + ──────────── +\n",
|
||
" ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ 4 8 4 \n",
|
||
" ⎥ ⎢ ── - ──── ⎥ ⎢───⎥ ⎢ \n",
|
||
" ⎥ ⎣ 4 4 ⎦ ⎣ 2 ⎦ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ √2⋅⎜- ─ + ─⎟ √2\n",
|
||
" ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠ \n",
|
||
" ⎥ ⎢───────────── - ─────────── + ──────────── - ──\n",
|
||
" ⎦ ⎣ 8 8 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎤ \n",
|
||
"⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎝2 2⎠ ⎥ \n",
|
||
"────────── ⎥ \n",
|
||
" 4 ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ ── +\n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎡ √2 ⎤ ⎡1/2 ⎤ ⎡ √2 ⎤ ⎢ 4 4 ⎥ ⎢ 4 \n",
|
||
" √2⋅⎜─ - ─⎟ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎡1/2 ⎤ ⎢ √2 \n",
|
||
" ────────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢- ── \n",
|
||
" 4 ⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢-1/2⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢ √2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ── +\n",
|
||
" √2⋅(-1 + ⅈ)⎥ ⎢-√2 ⎥ ⎢ ⅈ ⎥ ⎣1/2 ⎦ ⎢-√2⋅ⅈ ⎥ ⎢ 4 4 ⎥ ⎣-1/2⎦ ⎢ 4 \n",
|
||
" ───────────⎥ ⎢────⎥ ⎢ ─ ⎥ ⎢──────⎥ ⎢ ⎥ ⎢ \n",
|
||
" 8 ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 \n",
|
||
" ⎥ ⎢- ── - ────⎥ ⎢ ── -\n",
|
||
" ⎛ 1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎣ 4 \n",
|
||
"⋅ⅈ⋅⎜- ─ + ─⎟⎥ \n",
|
||
" ⎝ 2 2⎠⎥ \n",
|
||
"────────────⎥ \n",
|
||
" 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ \n",
|
||
" 4 ⎥ ⎡ 0 ⎤ ⎡1/2 ⎤ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎡1/2⎤ ⎡√2⎤ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢──⎥ \n",
|
||
" √2⋅ⅈ⎥ ⎢-√2 ⎥ ⎢-1/2⎥ ⎢-√2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢-ⅈ ⎥ ⎢2 ⎥ ⎡1\n",
|
||
"+ ────⎥ ⎢────⎥ ⎢ ⎥ ⎢────⎥ ⎢- ── - ────⎥ ⎢- ── - ────⎥ ⎢───⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4 ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢0 ⎥ ⎢1\n",
|
||
" ⎥, ⎢ ⎥, ⎢─── ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" √2⋅ⅈ ⎥ ⎢ √2 ⎥ ⎢ 2 ⎥ ⎢√2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢1/2⎥ ⎢0 ⎥ ⎢1\n",
|
||
" ──── ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢────⎥ ⎢ ── + ──── ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4 ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⅈ ⎥ ⎢√2⎥ ⎣-\n",
|
||
" ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢──⎥ \n",
|
||
" √2⋅ⅈ ⎥ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 ⎦ ⎣2 ⎦ \n",
|
||
" ──── ⎥ ⎢- ── + ────⎥ ⎢- ── - ────⎥ \n",
|
||
" 4 ⎦ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢ ── + ──── ⎥ \n",
|
||
" ⎡ √2 ⎤ ⎡1/2⎤ ⎡1/2⎤ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡ 0 ⎤\n",
|
||
" ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
"/2 ⎤ ⎢ 2 ⎥ ⎢1/2⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1 ⅈ⎥ ⎡-1/2⎤ ⎢ -√2 ⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢- ─ + ─⎥ ⎢ ⎥ ⎢ ──── ⎥\n",
|
||
"/2 ⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 2 2⎥ ⎢-1/2⎥ ⎢ 2 ⎥\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥\n",
|
||
"/2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢1/2 ⎥ ⎢-√2⋅ⅈ ⎥\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢- ─ + ─⎥ ⎢ ⎥ ⎢──────⎥\n",
|
||
"1/2⎦ ⎢√2⋅ⅈ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢ 4 4 ⎥ ⎢ 2 2⎥ ⎣-1/2⎦ ⎢ 2 ⎥\n",
|
||
" ⎢────⎥ ⎢───⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
" ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣1/2⎦ ⎣-1/2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎣ 0 ⎦\n",
|
||
" ⎢- ── + ────⎥ \n",
|
||
" ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢ ─ + ────────── - ─ ⎥ ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⎢ 4 4 4 ⎥ ⎡1/2⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎡1/2 ⎤ ⎡1 ⅈ⎤\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢─ + ─⎥\n",
|
||
" ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢2 2⎥\n",
|
||
" ⎢- ─ + ────────── + ─⎥ ⎢ ─ ⎥ ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ ⎢ ─ ⎥ ⎢ ⎥\n",
|
||
" ⎢ 4 4 4⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥\n",
|
||
", ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥\n",
|
||
" ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢ 0 ⎥\n",
|
||
" ⎢- ─ + ────────── + ─⎥ ⎢ ─ ⎥ ⎢ ── + ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ⎥\n",
|
||
" ⎢ 4 4 4⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⅈ ⎥ ⎢1 ⅈ⎥\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢─ + ─⎥\n",
|
||
" ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎣1/2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 ⎦ ⎣2 2⎦\n",
|
||
" ⎢ ─ + ────────── - ─ ⎥ ⎢- ── - ────⎥ ⎢- ── + ────⎥ \n",
|
||
" ⎣ 4 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⎢ 4 4 ⎥ ⎡ 1 ⅈ ⎤ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ ⅈ ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ \n",
|
||
" ⎢ ⎥ ⎢ ─ + ─ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢1 ⅈ⎥ ⎢ 1 ⅈ ⎥ \n",
|
||
" ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢─ + ─⎥ ⎢ ─ + ─ ⎥ \n",
|
||
" ⎢ 4 4 ⎥ ⎢ 0 ⎥ ⎢1/2⎥ ⎢ 4 4 ⎥ ⎢1/2 ⎥ ⎢2 2⎥ ⎢ 2 2 ⎥ \n",
|
||
", ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, \n",
|
||
" ⎢ √2 √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢1/2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢1 ⅈ⎥ ⎢ 1 ⅈ⎥ \n",
|
||
" ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ ─ ⎥ ⎢─ + ─⎥ ⎢- ─ + ─⎥ \n",
|
||
" ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢2 2⎥ ⎢ 2 2⎥ \n",
|
||
" ⎢ ⎥ ⎢- ─ + ─⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 2⎦ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣-1/2⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ \n",
|
||
" ⎢ ── - ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
"⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ \n",
|
||
"⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"⎢- ──────────── + ────────── + ──────────── + ──────────⎥ \n",
|
||
"⎢ 4 4 4 4 ⎥ ⎡ √2 √2⋅ⅈ\n",
|
||
"⎢ ⎥ ⎢ ── - ────\n",
|
||
"⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡1/2 ⎤ ⎢ 4 4 \n",
|
||
"⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅\n",
|
||
"⎢- ────────── + ──────────── + ────────── + ────────────⎥ ⎢ ─ ⎥ ⎢- ── + ───\n",
|
||
"⎢ 4 4 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 \n",
|
||
"⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢-ⅈ ⎥ ⎢ √2 √2⋅ⅈ\n",
|
||
"⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢─── ⎥ ⎢ ── + ────\n",
|
||
"⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ 2 ⎥ ⎢ 4 4 \n",
|
||
"⎢ ────────── - ──────────── + ────────── + ──────────── ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎢ 4 4 4 4 ⎥ ⎣-1/2⎦ ⎢ √2 √2⋅ⅈ\n",
|
||
"⎢ ⎥ ⎢ ── + ────\n",
|
||
"⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣ 4 4 \n",
|
||
"⎢ √2⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ \n",
|
||
"⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"⎢- ────────── + ────────── + ──────────── + ────────────⎥ \n",
|
||
"⎣ 4 4 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1\n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2\n",
|
||
" ⎢ ────────── - ──────────── + ────────── + ───────\n",
|
||
" ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 4 4 4 \n",
|
||
" ⎥ ⎢ ── - ──── ⎥ ⎢ \n",
|
||
" ⎥ ⎡1/2⎤ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜\n",
|
||
"ⅈ⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝\n",
|
||
"─⎥ ⎢ ─ ⎥ ⎢- ── + ────⎥ ⎢ - ────────── + ────────── + ──────────── + ──────\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 4 4\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢1/2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅\n",
|
||
" ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ \n",
|
||
" ⎥ ⎢───⎥ ⎢ ⎥ ⎢ ────────────── - ──────────── + ──────────── + ───\n",
|
||
" ⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ 4 4 4 \n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" ⎦ ⎣ 4 4 ⎦ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ\n",
|
||
" ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ \n",
|
||
" ⎢- ────────── + ────────────── + ──────────── + ────\n",
|
||
" ⎣ 4 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞\n",
|
||
" - ─⎟ ⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟\n",
|
||
" 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠\n",
|
||
"───── ⎥ ⎢────────── + ──────────── - ──────────────\n",
|
||
" ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 4 4 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
"1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎡1 ⅈ⎤ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
"─ - ─⎟ ⎥ ⎢ ⎥ ⎢─ + ─⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟\n",
|
||
"2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢2 2⎥ ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠\n",
|
||
"────── ⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢────────────── - ──────────── + ──────────\n",
|
||
" ⎥ ⎢ 4 4 ⎥ ⎢ 0 ⎥ ⎢ 4 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎛1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"⎜─ + ─⎟ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ √2⋅⎜- ─ + ─⎟ \n",
|
||
"⎝2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢1 ⅈ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"─────── ⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢ ──────────── \n",
|
||
" 4 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣2 2⎦ ⎢ 2 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"⋅⎜─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎝2 2⎠⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"────────⎥ ⎢ ────────────── \n",
|
||
" 4 ⎦ ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞⎤ ⎡ ⎛1 ⅈ⎞ \n",
|
||
" √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ √2⋅⎜─ - ─⎟ \n",
|
||
" ⎝2 2⎠⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1\n",
|
||
" + ────────────⎥ ⎢ ───────────── + ────────── + ──────\n",
|
||
" 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎢ 8 4 8\n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞⎥ ⎢ 4 4 ⎥ ⎡ ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ √2⋅⎜─ - ─⎟ \n",
|
||
" ⎝2 2⎠⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅ⅈ⋅(-\n",
|
||
" + ────────────⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ - ─────────── + ────────── - ───────\n",
|
||
" 4 ⎥ ⎢ 4 4 ⎥ ⎢1/2⎥ ⎢ 8 4 8\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛\n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢───⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜\n",
|
||
" ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢────────────── + ───────────── + ────\n",
|
||
" ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣1/2⎦ ⎢ 4 8 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⎥ ⎣ 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎛ \n",
|
||
" ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- \n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ √2⋅(-1 + ⅈ) ⎝ \n",
|
||
" ⎥ ⎢────────────── - ─────────── + ──────\n",
|
||
" ⎦ ⎣ 4 8 4\n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎤ \n",
|
||
" √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" + ⅈ) ⎝2 2⎠ ⎥ \n",
|
||
"───── + ──────────── ⎥ \n",
|
||
" 4 ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎡ 0 ⎤ ⎡0 ⎤ ⎡1/2⎤ ⎡ ⅈ ⎤ ⎡ 0 ⎤ ⎡ ⅈ ⎤ \n",
|
||
" √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ─ ⎥ \n",
|
||
"1 + ⅈ) ⎝2 2⎠ ⎥ ⎡1/2 ⎤ ⎢ √2 ⎥ ⎢√2⎥ ⎢1/2⎥ ⎢ 2 ⎥ ⎢ √2 ⎥ ⎢ 2 ⎥ ⎡-\n",
|
||
"────── + ──────────── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4 ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢2 ⎥ ⎢-ⅈ ⎥ ⎢1/2⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢1\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢───⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" 1 ⅈ⎞ ⎥ ⎢-1/2⎥ ⎢√2⋅ⅈ⎥ ⎢√2⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢-√2 ⎥ ⎢1/2⎥ ⎢1\n",
|
||
"- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢────⎥ ⎢──⎥ ⎢ ⎥ ⎢───⎥ ⎢────⎥ ⎢ ⎥ ⎢ \n",
|
||
" 2 2⎠ √2⋅(-1 + ⅈ)⎥ ⎣1/2 ⎦ ⎢ 2 ⎥ ⎢2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎣1\n",
|
||
"──────── + ───────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ \n",
|
||
" 4 8 ⎥ ⎣ 0 ⎦ ⎣0 ⎦ ⎣ 2 ⎦ ⎣1/2⎦ ⎣ 0 ⎦ ⎣ 2 ⎦ \n",
|
||
" ⎥ \n",
|
||
"1 ⅈ⎞ ⎥ \n",
|
||
"─ + ─⎟ ⎥ \n",
|
||
"2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ)⎥ \n",
|
||
"────── - ─────────────⎥ \n",
|
||
" 8 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞⎤ \n",
|
||
" ⎢√2⋅⎜─ - ─⎟⎥ \n",
|
||
" ⎢ ⎝2 2⎠⎥ \n",
|
||
" ⎢──────────⎥ \n",
|
||
" ⎢ 2 ⎥ \n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎡ 0 ⎤ ⎡-1/2⎤ ⎡-ⅈ ⎤ ⎡-ⅈ ⎤ ⎢ ⎛1 ⅈ⎞⎥ ⎡√2⎤ ⎡1/2⎤ ⎡ √2\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢───⎥ ⎢─── ⎥ ⎢√2⋅⎜─ + ─⎟⎥ ⎢──⎥ ⎢ ⎥ ⎢ ──\n",
|
||
"1/2⎤ ⎢ √2 ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠⎥ ⎡1/2 ⎤ ⎢2 ⎥ ⎢1/2⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢──────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"/2 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢1/2⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢0 ⎥ ⎢ ⅈ ⎥ ⎢ 0 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ \n",
|
||
"/2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢-1/2⎥ ⎢ ⎛1 ⅈ⎞⎥ ⎢1/2 ⎥ ⎢0 ⎥ ⎢ 2 ⎥ ⎢ 0 \n",
|
||
" ⎥ ⎢──────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢√2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"/2 ⎦ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ ⎝2 2⎠⎥ ⎣-1/2⎦ ⎢√2⎥ ⎢-ⅈ ⎥ ⎢√2⋅\n",
|
||
" ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢──────────⎥ ⎢──⎥ ⎢───⎥ ⎢───\n",
|
||
" ⎣ 0 ⎦ ⎣ 2 ⎦ ⎣1/2⎦ ⎣ 2 ⎦ ⎢ 2 ⎥ ⎣2 ⎦ ⎣ 2 ⎦ ⎣ 2 \n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎢ ⎛1 ⅈ⎞⎥ \n",
|
||
" ⎢√2⋅⎜─ - ─⎟⎥ \n",
|
||
" ⎢ ⎝2 2⎠⎥ \n",
|
||
" ⎢──────────⎥ \n",
|
||
" ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛ 1 ⅈ⎞⎤ \n",
|
||
" ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝ 2 2⎠⎥ ⎡√2⋅ⅈ⋅(-1 \n",
|
||
" ⎢ ────────── ⎥ ⎢────────────⎥ ⎢─────────\n",
|
||
" ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 4 \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡√2⋅ⅈ⎤ ⎡ ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡-√2 ⎤ ⎡-1/2⎤ ⎢ ⎛1 \n",
|
||
" ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢────⎥ ⎢ ─ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢────⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - \n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢ ⎝2 \n",
|
||
" ⎥ ⎢ ────────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ────────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ────────\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢-ⅈ ⎥ ⎢ 2 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢─── ⎥, ⎢ \n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ 0 ⎥ ⎢-1/2⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢√2⋅ⅈ⋅(-1 \n",
|
||
" ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢─────────\n",
|
||
"ⅈ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢ ⎝ 2 2⎠⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢ 4 \n",
|
||
"─⎥ ⎢ ────────── ⎥ ⎢ ── ⎥ ⎢─── ⎥ ⎢────────────⎥ ⎢ ── ⎥ ⎢─── ⎥ ⎢ \n",
|
||
" ⎦ ⎢ 2 ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢ 2 ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢ ⎛ 1 \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢√2⋅⎜- ─ +\n",
|
||
" ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ ⎝ 2 \n",
|
||
" ⎢√2⋅⎜- ─ + ─⎟⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ ⎢─────────\n",
|
||
" ⎢ ⎝ 2 2⎠⎥ ⎢ ⎝ 2 2⎠⎥ ⎣ 2 \n",
|
||
" ⎢────────────⎥ ⎢────────────⎥ \n",
|
||
" ⎣ 2 ⎦ ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"+ ⅈ)⎤ \n",
|
||
"────⎥ \n",
|
||
" ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
"ⅈ⎞ ⎥ ⎡ √2 ⎤ ⎡1/2 ⎤ ⎡1/2⎤ ⎡√2⎤ ⎢ 4 4 ⎥ ⎡1/2 ⎤ ⎢ 4 4 ⎥ ⎡ \n",
|
||
"─⎟ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"2⎠ ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢-ⅈ ⎥ ⎢2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢-ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢-\n",
|
||
"── ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢───⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢─── ⎥ ⎢- ── - ────⎥ ⎢─\n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢0 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"+ ⅈ)⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢1/2⎥ ⎢0 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ \n",
|
||
"────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢√2⎥ ⎢ 4 4 ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ \n",
|
||
" ⎥ ⎢──────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢──⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎥ ⎣ 2 ⎦ ⎣-1/2⎦ ⎣ 2 ⎦ ⎣2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣ \n",
|
||
" ─⎟ ⎥ ⎢ ── - ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" 2⎠ ⎥ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
"─── ⎥ \n",
|
||
" ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ 1/2 \n",
|
||
" ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ ⎢ \n",
|
||
" 0 ⎤ ⎡1/2⎤ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─\n",
|
||
"√2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2\n",
|
||
"─────⎥ ⎢───⎥ ⎢──────⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ ⎢- ───────── + ────────\n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 2 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" √2 ⎥ ⎢-ⅈ ⎥ ⎢ √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1/2 \n",
|
||
" ── ⎥ ⎢───⎥ ⎢ ──── ⎥ ⎢ ── + ──── ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜─ + ─\n",
|
||
" 0 ⎦ ⎣1/2⎦ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2\n",
|
||
" ⎢- ── - ────⎥ ⎢ ── - ──── ⎥ ⎢- ───────── + ────────\n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 2 2 \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1/2 ⎤ \n",
|
||
" ⎤ ⎢ ⎥ ⎡ √2 √2\n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ── + ──\n",
|
||
"⎞⎥ ⎡ √2 ⎤ ⎡1/2⎤ ⎡ √2 ⎤ ⎡1/2⎤ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎡ ⅈ ⎤ ⎢ 4 4\n",
|
||
"⎟⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
"⎠⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢- ───────── + ─────────⎥ ⎢ 2 ⎥ ⎢ √2 √\n",
|
||
"─⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢- ── - ─\n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢-1/2⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⅈ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢1/2⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ ─ ⎥ ⎢1/2 ⎥ ⎢ √2 √\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢- ── - ─\n",
|
||
"⎞⎥ ⎢√2⋅ⅈ⎥ ⎢-ⅈ ⎥ ⎢-√2 ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢-ⅈ ⎥ ⎢ 4 \n",
|
||
"⎟⎥ ⎢────⎥ ⎢───⎥ ⎢────⎥ ⎢ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢─── ⎥ ⎢ \n",
|
||
"⎠⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣1/2⎦ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜- ─ + ─⎟⎥ ⎣ 2 ⎦ ⎢ √2 √\n",
|
||
"─⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢- ── - ─\n",
|
||
" ⎦ ⎢───────── - ───────────⎥ ⎣ 4 \n",
|
||
" ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ \n",
|
||
" ⎢ ─ + ────────── - ─ ⎥ \n",
|
||
"⋅ⅈ ⎤ ⎢ 4 4 4 ⎥ \n",
|
||
"── ⎥ ⎡ 0 ⎤ ⎢ ⎥ \n",
|
||
" ⎥ ⎢ ⎥ ⎡-1/2⎤ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡1/\n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
"2⋅ⅈ⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢-ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 1 ⎝2 2⎠ ⅈ ⎥ ⎢ ⅈ\n",
|
||
"───⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢─── ⎥ ⎢──────⎥ ⎢ ─ - ───────── - ─ ⎥ ⎢ ─\n",
|
||
"4 ⎥ ⎢─────────── - ─────────⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 4 2 4 ⎥ ⎢ 2\n",
|
||
" ⎥, ⎢ 2 2 ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"2⋅ⅈ⎥ ⎢ ⎥ ⎢1/2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢-1\n",
|
||
"───⎥ ⎢ 1 ⅈ ⎥ ⎢ ⎥ ⎢──────⎥ ⎢- ─ + ────────── + ─⎥ ⎢ \n",
|
||
"4 ⎥ ⎢ - ─ + ─ ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ 4 4 4⎥ ⎢ ⅈ\n",
|
||
" ⎥ ⎢ 2 2 ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─\n",
|
||
"2⋅ⅈ⎥ ⎢ ⎥ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎣ 2\n",
|
||
"───⎥ ⎣ 0 ⎦ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
"4 ⎦ ⎢1 ⅈ ⎝ 2 2⎠ ⎥ \n",
|
||
" ⎢─ - ─ - ─────────── ⎥ \n",
|
||
" ⎣4 4 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⅈ ⎤ \n",
|
||
" ⎢ ─ ⎥ \n",
|
||
"2 ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎡ 0 ⎤ ⎡ ⅈ ⎤ ⎡-1/2⎤ ⎡ 0 ⎤ ⎡-1/2⎤ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎥ ⎢√2⋅ⅈ⎥ ⎢√2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ √2⋅ⅈ ⎥ ⎢ ⅈ ⎥ \n",
|
||
" ⎥ ⎢────⎥ ⎢────⎥ ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢────⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ──── ⎥ ⎢ ─ ⎥ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, \n",
|
||
"/2⎥ ⎢√2⋅ⅈ⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢-ⅈ ⎥ ⎢-√2 ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ ⅈ ⎥ \n",
|
||
" ⎥ ⎢────⎥ ⎢ ── ⎥ ⎢─── ⎥ ⎢───⎥ ⎢────⎥ ⎢ ⎥ ⎢ ⎥ ⎢──────⎥ ⎢ ─ ⎥ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣-1/2⎦ ⎢ ⅈ ⎥ ⎣ 0 ⎦ ⎣-1/2⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎣-1/2⎦ \n",
|
||
" ⎢ ─ ⎥ \n",
|
||
" ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎥ \n",
|
||
" ⎢ ────────── ⎥ ⎢ ────────── ⎥ \n",
|
||
"⎡-ⅈ ⎤ ⎢ 2 ⎥ ⎢ 2 ⎥ \n",
|
||
"⎢───⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
"⎢ 2 ⎥ ⎡-ⅈ ⎤ ⎢ ⎛1 ⅈ⎞⎥ ⎡1/2⎤ ⎡ √2 ⎤ ⎡1/2⎤ ⎡ √2 ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"⎢ ⎥ ⎢─── ⎥ ⎢√2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
"⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎥ \n",
|
||
"⎢ ─ ⎥ ⎢ ⎥ ⎢────────────⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ──────────── ⎥ \n",
|
||
"⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ \n",
|
||
"⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥,\n",
|
||
"⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢1/2⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"⎢ ─ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ \n",
|
||
"⎢ 2 ⎥ ⎢-1/2⎥ ⎢ ⎝2 2⎠ ⎥ ⎢-ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢-√2 ⎥ ⎢ ⎝2 2⎠ ⎥ \n",
|
||
"⎢ ⎥ ⎢ ⎥ ⎢ ────────── ⎥ ⎢───⎥ ⎢────⎥ ⎢ ⎥ ⎢────⎥ ⎢ ────────── ⎥ \n",
|
||
"⎢ ⅈ ⎥ ⎣-1/2⎦ ⎢ 2 ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣1/2⎦ ⎣ 2 ⎦ ⎢ 2 ⎥ \n",
|
||
"⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
"⎣ 2 ⎦ ⎢ ⎛1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞⎥ \n",
|
||
" ⎢√2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟⎥ \n",
|
||
" ⎢ ⎝2 2⎠⎥ ⎢ ⎝ 2 2⎠⎥ \n",
|
||
" ⎢────────────⎥ ⎢──────────────⎥ \n",
|
||
" ⎣ 2 ⎦ ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛ 1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎥ ⎡√2⋅ⅈ⋅(-1 + ⅈ) ⎤ \n",
|
||
" ⎢ ──────────── ⎥ ⎢───────────── ⎥ \n",
|
||
" ⎢ 2 ⎥ ⎢ 4 ⎥ ⎡ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎡√2⋅ⅈ⎤ ⎡ ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡-√2 ⎤ ⎡-1/2⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡1/2⎤ ⎢ \n",
|
||
" ⎢────⎥ ⎢ ─ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢────⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢1/2⎥ ⎢ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ──────────── ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ──────────── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ \n",
|
||
" ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢───⎥, ⎢ \n",
|
||
" ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 0 ⎥ ⎢-ⅈ ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢───────────── ⎥ ⎢ ⎥ ⎢-\n",
|
||
" ⎢√2⋅ⅈ⎥ ⎢-1/2⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢ 4 ⎥ ⎢ ⅈ ⎥ ⎢ \n",
|
||
" ⎢────⎥ ⎢ ⎥ ⎢ ──────────── ⎥ ⎢────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" ⎣ 2 ⎦ ⎣1/2 ⎦ ⎢ 2 ⎥ ⎣ 2 ⎦ ⎣1/2 ⎦ ⎢ ⎛ 1 ⅈ⎞⎥ ⎣ 2 ⎦ ⎢ \n",
|
||
" ⎢ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ ⎝ 2 2⎠⎥ ⎣ \n",
|
||
" ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢──────────────⎥ \n",
|
||
" ⎢ ⎝ 2 2⎠⎥ ⎣ 2 ⎦ \n",
|
||
" ⎢──────────────⎥ \n",
|
||
" ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"√2 √2⋅ⅈ ⎤ ⎡√2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2\n",
|
||
"── - ──── ⎥ ⎢── - ────⎥ ⎢ ── - ──── ⎥ ⎢ ──\n",
|
||
"4 4 ⎥ ⎢4 4 ⎥ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡-ⅈ ⎤ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢───⎥ ⎢ \n",
|
||
"√2 √2⋅ⅈ ⎥ ⎢√2 √2⋅ⅈ⎥ ⎡1/2 ⎤ ⎢1 ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢1 ⅈ⎥ ⎢ 2 ⎥ ⎢ √2\n",
|
||
"── + ──── ⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢─ + ─⎥ ⎢ ── + ──── ⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢ ──\n",
|
||
"4 4 ⎥ ⎢4 4 ⎥ ⎢1/2 ⎥ ⎢2 2⎥ ⎢ 4 4 ⎥ ⎢2 2⎥ ⎢ ⅈ ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ \n",
|
||
" √2 √2⋅ⅈ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢1/2 ⎥ ⎢1 ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢1 ⅈ⎥ ⎢ 2 ⎥ ⎢ √2\n",
|
||
" ── + ────⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢- ── - ────⎥ ⎢─ + ─⎥ ⎢ ⎥ ⎢ ──\n",
|
||
" 4 4 ⎥ ⎢4 4 ⎥ ⎣-1/2⎦ ⎢2 2⎥ ⎢ 4 4 ⎥ ⎢2 2⎥ ⎢1/2⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"√2 √2⋅ⅈ ⎥ ⎢√2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎣1/2⎦ ⎢ √\n",
|
||
"── + ──── ⎥ ⎢── - ────⎥ ⎢- ── + ────⎥ ⎢- ─\n",
|
||
"4 4 ⎦ ⎣4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 4\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠\n",
|
||
" ⎢ ────────── - ──────────── + ──────────\n",
|
||
" √2⋅ⅈ ⎤ ⎡-ⅈ ⎤ ⎢ 4 4 4 \n",
|
||
" - ──── ⎥ ⎢───⎥ ⎢ \n",
|
||
" 4 ⎥ ⎢ 2 ⎥ ⎡1 ⅈ⎤ ⎡ 1 ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢ ─ - ─ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ +\n",
|
||
" √2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢2 2⎥ ⎢ 2 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
" + ──── ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ──────────── + ────────── + ─────────\n",
|
||
" 4 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 4 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" √2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" - ──── ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ +\n",
|
||
" 4 ⎥ ⎢ 2 ⎥ ⎢1 ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢─ + ─⎥ ⎢- ─ + ─⎥ ⎢- ──────────── + ────────── + ─────────\n",
|
||
"2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎣2 2⎦ ⎣ 2 2⎦ ⎢ 4 4 4 \n",
|
||
"─ - ────⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" 4 ⎦ ⎣ 2 ⎦ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠\n",
|
||
" ⎢ ────────── - ──────────── + ──────────\n",
|
||
" ⎣ 4 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞\n",
|
||
" √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟\n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠\n",
|
||
" + ──────────── ⎥ ⎢ - ────────────\n",
|
||
" 4 ⎥ ⎡√2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 \n",
|
||
" ⎥ ⎢── + ────⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡1/2⎤ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ \n",
|
||
" 2⎠ ⎝2 2⎠⎥ ⎢1/2⎥ ⎢√2 √2⋅ⅈ⎥ ⎡1/2 ⎤ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ \n",
|
||
"─── + ──────────⎥ ⎢ ⎥ ⎢── - ────⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ────────── - \n",
|
||
" 4 ⎥ ⎢ ⅈ ⎥ ⎢4 4 ⎥ ⎢1/2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 2 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢-1/2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢── - ────⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢√2⋅⎜- ─ + ─⎟ \n",
|
||
" 2⎠ ⎝2 2⎠⎥ ⎢-ⅈ ⎥ ⎢4 4 ⎥ ⎣1/2 ⎦ ⎢ 4 4 ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"─── + ──────────⎥ ⎢───⎥ ⎢ ⎥ ⎢ ⎥ ⎢──────────── + \n",
|
||
" 4 ⎥ ⎣ 2 ⎦ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢── + ────⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎣4 4 ⎦ ⎣ 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
" + ──────────── ⎥ ⎢────────────── \n",
|
||
" 4 ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ √2⋅ⅈ\n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
" + ────────── + ──────────── + ────────── ⎥ ⎢- ────\n",
|
||
" 4 4 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎢ \n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎢ ⎛1\n",
|
||
"√2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─\n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 1 ⅈ ⎥ ⎢ ⎝2\n",
|
||
"──────────── + ────────── + ──────────── ⎥ ⎢ ── + ──── ⎥ ⎢ ─ + ─ ⎥ ⎢ ─────\n",
|
||
" 4 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 2 ⎥ ⎢ 4\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 1 ⅈ⎥ ⎢ \n",
|
||
"√2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ── - ──── ⎥ ⎢- ─ - ─⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ 4 4 ⎥ ⎢ 2 2⎥ ⎢ \n",
|
||
"──────────── + ────────── - ──────────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4 4 4 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 0 ⎦ ⎢ \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎢ \n",
|
||
" √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
"- ──────────── + ──────────── + ──────────⎥ ⎢ \n",
|
||
" 4 4 4 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ \n",
|
||
"⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟⎥ \n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ \n",
|
||
"──────── + ────────────── + ────────── + ────────────⎥ \n",
|
||
" 4 4 4 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎡-ⅈ ⎤ \n",
|
||
" ⎥ ⎢- ── - ────⎥ ⎢───⎥ \n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ \n",
|
||
" - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ \n",
|
||
"───── + ──────────── - ────────────── + ──────────── ⎥ ⎢- ── + ────⎥ ⎢ ─ ⎥ \n",
|
||
" 4 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ \n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ── - ──── ⎥ ⎢───⎥ \n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ \n",
|
||
" ──────────── ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢───⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎣ 4 4 ⎦ ⎣ 2 ⎦ \n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎥ \n",
|
||
" ──────────── ⎥ \n",
|
||
" 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
"⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
"⎢ ⎝2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ \n",
|
||
"⎢ - ──────────── + ───────────── - ─────────── + ────────── ⎥ \n",
|
||
"⎢ 4 8 8 4 ⎥ ⎡ √2 \n",
|
||
"⎢ ⎥ ⎢ ── - \n",
|
||
"⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎡1/2 ⎤ ⎢ 4 \n",
|
||
"⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ ⅈ ⎥ ⎢ √2 \n",
|
||
"⎢ ───────────── + ────────── + ─────────── + ──────────── ⎥ ⎢ ─ ⎥ ⎢- ── +\n",
|
||
"⎢ 8 4 8 4 ⎥ ⎢ 2 ⎥ ⎢ 4 \n",
|
||
"⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢-ⅈ ⎥ ⎢ √2 \n",
|
||
"⎢ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢─── ⎥ ⎢- ── +\n",
|
||
"⎢√2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠ ⎝ 2 2⎠⎥ ⎢ 2 ⎥ ⎢ 4 \n",
|
||
"⎢───────────── - ─────────── + ──────────── - ──────────────⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎢ 8 8 4 4 ⎥ ⎣-1/2⎦ ⎢ √2 \n",
|
||
"⎢ ⎥ ⎢- ── +\n",
|
||
"⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎣ 4 \n",
|
||
"⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
"⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅(-1 + ⅈ)⎥ \n",
|
||
"⎢────────────── + ───────────── + ──────────── + ───────────⎥ \n",
|
||
"⎣ 4 8 4 8 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"√2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √\n",
|
||
"──── ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ─\n",
|
||
" 4 ⎥ ⎢ 4 4 ⎥ ⎡1/2⎤ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎡-ⅈ ⎤ ⎢ 4\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ \n",
|
||
" √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢ 1 ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" ────⎥ ⎢- ── + ────⎥ ⎢ ─ ⎥ ⎢- ─ + ─⎥ ⎢- ── + ────⎥ ⎢- ─ + ─⎥ ⎢ ⎥ ⎢- \n",
|
||
" 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 2 2⎥ ⎢ 4 4 ⎥ ⎢ 2 2⎥ ⎢-1/2⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢1/2⎥ ⎢ 1 ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1 ⅈ ⎥ ⎢1/2 ⎥ ⎢ √\n",
|
||
" ────⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ─ - ─ ⎥ ⎢- ── - ────⎥ ⎢ ─ + ─ ⎥ ⎢ ⎥ ⎢ ─\n",
|
||
" 4 ⎥ ⎢ 4 4 ⎥ ⎢-ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ 4 4 ⎥ ⎢ 2 2 ⎥ ⎢ ⅈ ⎥ ⎢ 4\n",
|
||
" ⎥ ⎢ ⎥ ⎢───⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎢ √\n",
|
||
" ────⎥ ⎢ ── + ──── ⎥ ⎢- ── - ────⎥ ⎢ ─\n",
|
||
" 4 ⎦ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 4\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 \n",
|
||
" ⎢ ────────── - ──────────── + ──────\n",
|
||
"2 √2⋅ⅈ ⎤ ⎢ 4 4 4 \n",
|
||
"─ - ──── ⎥ ⎢ \n",
|
||
" 4 ⎥ ⎡-ⅈ ⎤ ⎡ 1 ⅈ ⎤ ⎡ 1 ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1\n",
|
||
" ⎥ ⎢─── ⎥ ⎢ ─ - ─ ⎥ ⎢ ─ - ─ ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─\n",
|
||
"√2 √2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2\n",
|
||
"── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ────────── + ────────── + ───────\n",
|
||
"4 4 ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 4 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"2 √2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"─ - ──── ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅\n",
|
||
" 4 ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢- ─ - ─⎥ ⎢- ──────────── + ────────── + ─────\n",
|
||
"2 √2⋅ⅈ ⎥ ⎣-1/2⎦ ⎣ 2 2⎦ ⎣ 2 2⎦ ⎢ 4 4 \n",
|
||
"─ - ──── ⎥ ⎢ \n",
|
||
" 4 ⎦ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1\n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─\n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2\n",
|
||
" ⎢- ────────── + ──────────── + ─────\n",
|
||
" ⎣ 4 4 4\n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛\n",
|
||
"+ ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜\n",
|
||
" 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝\n",
|
||
"──── + ──────────── ⎥ ⎢ - ──────\n",
|
||
" 4 ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4\n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡1/2⎤ ⎢ 4 4 ⎥ ⎡1/2 ⎤ ⎢ 4 4 ⎥ ⎢ ⎛1 \n",
|
||
" + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ \n",
|
||
" 2⎠ ⎝2 2⎠⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎝2 \n",
|
||
"───── + ────────────⎥ ⎢ ─ ⎥ ⎢ ── + ──── ⎥ ⎢ ─ ⎥ ⎢ ── + ──── ⎥ ⎢ - ──────\n",
|
||
" 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎛ 1 \n",
|
||
"⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ─ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢√2⋅⎜- ─ +\n",
|
||
"⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ ⎝ 2 \n",
|
||
"─────── + ──────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢─────────\n",
|
||
"4 4 ⎥ ⎣1/2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢- ── - ────⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎢ ⎛ 1\n",
|
||
" + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢√2⋅ⅈ⋅⎜- ─\n",
|
||
" 2⎠ ⎝2 2⎠⎥ ⎢ ⎝ 2\n",
|
||
"───── + ────────────⎥ ⎢─────────\n",
|
||
" 4 ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡\n",
|
||
"─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢\n",
|
||
"2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢\n",
|
||
"────── + ────────── + ──────────── + ────────── ⎥ ⎢\n",
|
||
" 4 4 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ ⎢\n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎡ 0 ⎤ ⎢\n",
|
||
"- ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢\n",
|
||
"──── + ──────────── + ────────── + ──────────── ⎥ ⎢- ── + ────⎥ ⎢- ─ + ─⎥ ⎢\n",
|
||
" 4 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 2⎥ ⎢\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 1 ⅈ⎥ ⎢\n",
|
||
" ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ── - ──── ⎥ ⎢- ─ - ─⎥ ⎢\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ 4 4 ⎥ ⎢ 2 2⎥ ⎢\n",
|
||
"─── + ──────────── + ────────── - ──────────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" 4 4 4 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣ 0 ⎦ ⎢\n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢\n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎢\n",
|
||
" + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢\n",
|
||
" 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢\n",
|
||
"───── - ──────────── + ──────────── + ──────────⎥ ⎢\n",
|
||
" 4 4 4 ⎦ ⎣\n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ \n",
|
||
" √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟⎥ \n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ \n",
|
||
"- ──────────── + ────────────── + ────────── + ────────────⎥ \n",
|
||
" 4 4 4 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ \n",
|
||
" ⎥ ⎢- ── - ────⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎡\n",
|
||
" √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢\n",
|
||
" ────────────── - ────────── + ──────────── + ──────────── ⎥ ⎢- ── - ────⎥ ⎢\n",
|
||
" 4 4 4 4 ⎥ ⎢ 4 4 ⎥ ⎢\n",
|
||
" ⎥, ⎢ ⎥, ⎢\n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢\n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ── - ──── ⎥ ⎢\n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢\n",
|
||
" ──────────── ⎥ ⎢ ⎥ ⎢\n",
|
||
" 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣\n",
|
||
" ⎥ ⎢- ── + ────⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎣ 4 4 ⎦ \n",
|
||
" √2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎥ \n",
|
||
" ────────────── ⎥ \n",
|
||
" 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ ⎥ ⎢√2⋅⎜─ +\n",
|
||
" ⎢ ⎝2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ ⎝2 \n",
|
||
" ⎢ - ──────────── + ───────────── - ─────────── + ────────── ⎥ ⎢───────\n",
|
||
" ⎢ 4 8 8 4 ⎥ ⎢ 2 \n",
|
||
" ⎢ ⎥ ⎢ \n",
|
||
"-ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 \n",
|
||
"─── ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢√2⋅⎜─ -\n",
|
||
" 2 ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 \n",
|
||
" ⎥ ⎢ ───────────── - ─────────── - ────────── + ──────────── ⎥ ⎢───────\n",
|
||
"-1/2⎥ ⎢ 8 8 4 4 ⎥ ⎢ 2 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ \n",
|
||
"-ⅈ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛1 \n",
|
||
"─── ⎥ ⎢ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢√2⋅⎜─ -\n",
|
||
" 2 ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⎝2 \n",
|
||
" ⎥ ⎢───────────── - ─────────── + ──────────── - ──────────────⎥ ⎢───────\n",
|
||
"1/2 ⎦ ⎢ 8 8 4 4 ⎥ ⎢ 2 \n",
|
||
" ⎢ ⎥ ⎢ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎛1 \n",
|
||
" ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢√2⋅⎜─ +\n",
|
||
" ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅(-1 + ⅈ)⎥ ⎢ ⎝2 \n",
|
||
" ⎢────────────── + ───────────── - ──────────── - ───────────⎥ ⎢───────\n",
|
||
" ⎣ 4 8 4 8 ⎦ ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞⎤ ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛\n",
|
||
" ─⎟⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜\n",
|
||
" 2⎠⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝\n",
|
||
"───⎥ ⎢ ────────── ⎥ ⎢- ──────────── + ────\n",
|
||
" ⎥ ⎡ 1/2 ⎤ ⎢ 2 ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ⎞⎥ ⎢ 1/2 ⎥ ⎡1/2⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1\n",
|
||
" ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─\n",
|
||
" 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢1/2⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2\n",
|
||
"───⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢ ────────── ⎥ ⎢ ────────── - ───────\n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 4 4 \n",
|
||
" ⎥, ⎢- ───────── + ─────────⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ⎞⎥ ⎢ 2 2 ⎥ ⎢ 2 ⎥ ⎢ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1\n",
|
||
" ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢√2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─\n",
|
||
" 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢-ⅈ ⎥ ⎢ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝2\n",
|
||
"───⎥ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢───⎥ ⎢────────────⎥ ⎢ ────────── - ───────\n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎣ 2 ⎦ ⎢ 2 ⎥ ⎢ 4 4 \n",
|
||
" ⎥ ⎢- ───────── + ─────────⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ⎞⎥ ⎣ 2 2 ⎦ ⎢ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛\n",
|
||
" ─⎟⎥ ⎢√2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜\n",
|
||
" 2⎠⎥ ⎢ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝\n",
|
||
"───⎥ ⎢────────────⎥ ⎢- ──────────── + ────\n",
|
||
" ⎦ ⎣ 2 ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅\n",
|
||
"2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"────── + ──────────── + ──────────⎥ ⎢- ──────────── + ────────── + ───\n",
|
||
"4 4 4 ⎥ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎡1/2⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛\n",
|
||
" + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢1/2⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝\n",
|
||
"───── + ────────── + ──────────── ⎥ ⎢ ⎥ ⎢ ────────── - ──────────── + ────\n",
|
||
" 4 4 ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 \n",
|
||
" ⎥, ⎢───⎥, ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"───── + ────────── + ──────────── ⎥ ⎢ ─ ⎥ ⎢- ────────── + ──────────── + ───\n",
|
||
" 4 4 ⎥ ⎣ 2 ⎦ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅\n",
|
||
"2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"────── + ──────────── + ──────────⎥ ⎢- ────────── + ────────── + ─────\n",
|
||
"4 4 4 ⎦ ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎡ ⎛1 ⅈ⎞⎤ ⎡ ⎛1 ⅈ⎞\n",
|
||
"ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢√2⋅⎜─ - ─⎟⎥ ⎢ √2⋅⎜─ - ─⎟\n",
|
||
" ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠\n",
|
||
"───────── + ──────────⎥ ⎢──────────⎥ ⎢ ──────────\n",
|
||
" 4 4 ⎥ ⎢ 2 ⎥ ⎡ 1/2 ⎤ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞⎥ ⎢ 1/2 ⎥ ⎢ ⎛1 ⅈ⎞\n",
|
||
"─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢√2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢ √2⋅⎜─ + ─⎟\n",
|
||
"2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎝2 2⎠\n",
|
||
"────── + ──────────── ⎥ ⎢──────────⎥ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ ──────────\n",
|
||
"4 4 ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 2 \n",
|
||
" ⎥, ⎢ ⎥, ⎢- ───────── + ─────────⎥, ⎢ \n",
|
||
"⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞⎥ ⎢ 2 2 ⎥ ⎢ ⎛1 ⅈ\n",
|
||
"⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢√2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢√2⋅ⅈ⋅⎜─ + ─\n",
|
||
"⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎝2 2\n",
|
||
"─────── + ────────────⎥ ⎢──────────⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢───────────\n",
|
||
" 4 4 ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢- ───────── + ─────────⎥ ⎢ \n",
|
||
"⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞⎥ ⎣ 2 2 ⎦ ⎢ ⎛1 ⅈ\n",
|
||
"⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢√2⋅⎜─ - ─⎟⎥ ⎢√2⋅ⅈ⋅⎜─ - ─\n",
|
||
"⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠⎥ ⎢ ⎝2 2\n",
|
||
"─────── + ────────────⎥ ⎢──────────⎥ ⎢───────────\n",
|
||
"4 4 ⎦ ⎣ 2 ⎦ ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ \n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ \n",
|
||
" ⎥ ⎢ ────────── - ──────────── + ────────── + ──────────── ⎥ ⎢ ────────── - \n",
|
||
" ⎥ ⎢ 4 4 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞\n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟\n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠\n",
|
||
" ⎥ ⎢- ──────────── + ────────── + ──────────── + ──────────⎥ ⎢- ────────────\n",
|
||
" ⎥ ⎢ 4 4 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
"⎟⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ √2⋅⎜─ + ─⎟ \n",
|
||
"⎠⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ \n",
|
||
"─⎥ ⎢- ──────────── + ────────── + ──────────── + ──────────⎥ ⎢- ────────── +\n",
|
||
" ⎥ ⎢ 4 4 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
"⎟⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ \n",
|
||
"⎠⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ \n",
|
||
"─⎥ ⎢ ────────── - ──────────── + ────────── + ──────────── ⎥ ⎢- ────────── +\n",
|
||
" ⎦ ⎣ 4 4 4 4 ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" ⎡ 2 \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎢ ⎜─ + ─⎟ ⎜─ -\n",
|
||
"√2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝2 2⎠ ⎝2 \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢⎜─ - ─⎟⋅⎜─ + ─⎟ + ──────── - ────\n",
|
||
"──────────── + ────────── + ──────────── ⎥ ⎢⎝2 2⎠ ⎝2 2⎠ 2 2\n",
|
||
" 4 4 4 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 2 \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎜─ - ─⎟ ⎜─ + ─⎟ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" + ────────── + ──────────── + ──────────⎥ ⎢ ──────── + ──────── \n",
|
||
" 4 4 4 ⎥ ⎢ 2 2 \n",
|
||
" ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 2 2 \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎜─ - ─⎟ ⎜─ + ─⎟ \n",
|
||
" ────────── + ──────────── + ────────────⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" 4 4 4 ⎥ ⎢ ──────── + ──────── \n",
|
||
" ⎥ ⎢ 2 2 \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
" √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ 2 \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
" ──────────── + ────────── + ────────────⎥ ⎢ ⎜─ - ─⎟ ⎜─ +\n",
|
||
" 4 4 4 ⎦ ⎢⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝2 2⎠ ⎝2 \n",
|
||
" ⎢⎜─ - ─⎟⋅⎜─ + ─⎟ + ──────── - ────\n",
|
||
" ⎣⎝2 2⎠ ⎝2 2⎠ 2 2\n",
|
||
"\n",
|
||
" 2⎤ ⎡ \n",
|
||
" ⅈ⎞ ⎥ ⎢ \n",
|
||
" ─⎟ ⎥ ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ ⎢ \n",
|
||
" 2⎠ ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢ \n",
|
||
"────⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎡ ⅈ ⎤ ⎢ \n",
|
||
" ⎥ ⎢ ────────── ⎥ ⎢ ────────── ⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡ ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ -ⅈ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ─ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ─── ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ────────── ⎥ ⎢ ⎥ ⎢ ────────── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢───⎥, ⎢ ⎥, ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥, ⎢ \n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
" ⎥ ⎢-√2⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢-√2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢───────── + ─────────⎥ ⎢⎛ 1\n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢1/2⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ 2 2 ⎥ ⎢⎜- ─\n",
|
||
" ⎥ ⎢────────────⎥ ⎢ ⎥ ⎢──────────────⎥ ⎢ ⎥ ⎢⎝ 2\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎣1/2⎦ ⎢ 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢────\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
" 2⎥ ⎢-√2⋅⎜─ + ─⎟ ⎥ ⎢-√2⋅ⅈ⋅⎜─ + ─⎟ ⎥ ⎢───────── + ─────────⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎣ 2 2 ⎦ ⎢⎛ 1\n",
|
||
" ─⎟ ⎥ ⎢────────────⎥ ⎢──────────────⎥ ⎢⎜- ─\n",
|
||
" 2⎠ ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎢⎝ 2\n",
|
||
"────⎥ ⎢────\n",
|
||
" ⎦ ⎣ \n",
|
||
"\n",
|
||
" 2 2 ⎤ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
" ⎜─ - ─⎟ ⎜─ + ─⎟ ⎥ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
" ──────── + ──────── ⎥ \n",
|
||
" 2 2 ⎥ \n",
|
||
" ⎥ ⎡ ⎛1 ⅈ⎞ \n",
|
||
" 2 2 ⎥ ⎢ ⅈ⋅⎜─ - ─⎟ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝2 2⎠ \n",
|
||
" ⎜─ - ─⎟ ⎜─ + ─⎟ ⎥ ⎢- ───────── \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ 2 \n",
|
||
" ⎜─ - ─⎟⋅⎜─ + ─⎟ + ──────── - ──────── ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ 2 2 ⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" ⎥, ⎢ ⅈ⋅⎜─ + ─⎟ \n",
|
||
" 2 ⎥ ⎢ ⎝2 2⎠ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢- ───────── \n",
|
||
" + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ 2 \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
"───────────── - ─────────────── + ──────── + ─────────────────⎥ ⎢ 1/\n",
|
||
" 2 2 2 2 ⎥ ⎢ \n",
|
||
" ⎥ ⎣ 1/\n",
|
||
" 2 ⎥ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ \n",
|
||
" + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"───────────── + ─────────────── - ──────── + ─────────────────⎥ \n",
|
||
" 2 2 2 2 ⎦ \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎡ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢⎛ 1\n",
|
||
" ⎢- ──────────── + ────────── + ──────────── + ──────────⎥ ⎢⎜- ─\n",
|
||
" ⎛1 ⅈ⎞⎤ ⎢ 4 4 4 4 ⎥ ⎢⎝ 2\n",
|
||
" ⅈ⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢────\n",
|
||
" ⎝2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"+ ─────────⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ────────── - ──────────── + ────────── + ──────────── ⎥ ⎢⎛1 \n",
|
||
" ⎛1 ⅈ⎞⎥ ⎢ 4 4 4 4 ⎥ ⎢⎜─ -\n",
|
||
" ⅈ⋅⎜─ - ─⎟⎥, ⎢ ⎥, ⎢⎝2 \n",
|
||
" ⎝2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢────\n",
|
||
"+ ─────────⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
" ⎥ ⎢- ────────── - ──────────── + ────────── - ────────────⎥ ⎢ \n",
|
||
"2 ⎥ ⎢ 4 4 4 4 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
"2 ⎦ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
" ⎢- ──────────── - ──────────── - ────────── + ──────────⎥ ⎣ \n",
|
||
" ⎣ 4 4 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ \n",
|
||
" 2 ⎤ ⎢ √2⋅\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
" + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ───\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
"───────────── + ─────────────── + ──────── - ─────────────────⎥ ⎢ \n",
|
||
" 2 2 2 2 ⎥ ⎡-ⅈ ⎤ ⎢ \n",
|
||
" ⎥ ⎢───⎥ ⎢ √2⋅\n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎥ ⎢ ───\n",
|
||
" ─⎟⋅⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ⅈ ⎥ ⎢ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥, ⎢ ─ ⎥, ⎢ \n",
|
||
"─────────── - ───────────────── + ──────── + ─────────────────⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" 2 2 2 2 ⎥ ⎢ ⎥ ⎢-√2⋅ⅈ\n",
|
||
" ⎥ ⎢1/2⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎥ ⎢─────\n",
|
||
" ⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎥ ⎣1/2⎦ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢-√2⋅ⅈ\n",
|
||
" ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎦ ⎢─────\n",
|
||
" ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎡ 2 \n",
|
||
"⎛1 ⅈ⎞ ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"⎜─ - ─⎟ ⎥ ⎢ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)\n",
|
||
"⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"─────── ⎥ ⎢ ─────────────── - ────────────────── + ──────── + ──────────\n",
|
||
" 2 ⎥ ⎢ 2 4 2 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
"⎛1 ⅈ⎞ ⎥ ⎢ 2 \n",
|
||
"⎜─ + ─⎟ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"⎝2 2⎠ ⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)\n",
|
||
"─────── ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" 2 ⎥ ⎢ ────────────────── + ─────────────── + ──────── - ──────────\n",
|
||
" ⎥, ⎢ 4 2 2 4 \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"⋅⎜─ + ─⎟ ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎜- \n",
|
||
"─────────⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ \n",
|
||
" 2 ⎥ ⎢───────────────── - ────────────────── + ────────────────── + ───\n",
|
||
" ⎥ ⎢ 2 4 4 \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"⋅⎜─ - ─⎟ ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⅈ⋅(-\n",
|
||
"─────────⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ \n",
|
||
" 2 ⎦ ⎢───────────────── + ────────────────── + ───────────────── - ────\n",
|
||
" ⎣ 2 4 2 \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎤ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ \n",
|
||
"⋅⎜─ + ─⎟ ⎥ \n",
|
||
" ⎝2 2⎠ ⎥ \n",
|
||
"──────── ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎥ ⎡ √2 ⎤ ⎡ √2 ⎤ ⎡1/2 ⎤ ⎡1/2⎤ ⎡√2⎤ ⎡1/2 ⎤ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ ── ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥ \n",
|
||
"⋅⎜─ + ─⎟ ⎥ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢-ⅈ ⎥ ⎢2 ⎥ ⎢-ⅈ ⎥ ⎡1/2 ⎤\n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢───⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥\n",
|
||
"──────── ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢0 ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥\n",
|
||
" ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢0 ⎥ ⎢ ⅈ ⎥ ⎢1/2 ⎥\n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥\n",
|
||
"─ + ─⎟⋅⎜─ - ─⎟⎥ ⎣1/2 ⎦ ⎢-√2⋅ⅈ ⎥ ⎢-√2 ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢√2⎥ ⎢ 2 ⎥ ⎣-1/2⎦\n",
|
||
"2 2⎠ ⎝2 2⎠⎥ ⎢──────⎥ ⎢────⎥ ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢──⎥ ⎢ ⎥ \n",
|
||
"──────────────⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣2 ⎦ ⎣-1/2⎦ \n",
|
||
" 2 ⎥ \n",
|
||
" ⎥ \n",
|
||
" ⎛1 ⅈ⎞⎥ \n",
|
||
"1 + ⅈ)⋅⎜─ + ─⎟⎥ \n",
|
||
" ⎝2 2⎠⎥ \n",
|
||
"──────────────⎥ \n",
|
||
" 4 ⎦ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜─ + ─⎟ ⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎥ \n",
|
||
" ⎢ ────────── ⎥ \n",
|
||
" ⎢ 2 ⎥ \n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎡ √2 ⎤ ⎡1/2⎤ ⎡1/2⎤ ⎡1/2⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡ 0 ⎤ ⎡1/2 ⎤ ⎡ 0 ⎤ \n",
|
||
" ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢-√2⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎢ 2 ⎥ ⎢1/2⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎡1/2 ⎤ ⎢-√2 ⎥ ⎢-1/2⎥ ⎢-√2 ⎥ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢────────────⎥ ⎢ ⎥ ⎢────⎥ ⎢ ⎥ ⎢────⎥ \n",
|
||
" ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ \n",
|
||
", ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢─── ⎥, ⎢ ⎥,\n",
|
||
" ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢ ⅈ ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢-1/2⎥ ⎢ √2 ⎥ ⎢ 2 ⎥ ⎢√2⋅ⅈ⎥ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢────⎥ \n",
|
||
" ⎢√2⋅ⅈ⎥ ⎢-ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎥ ⎣-1/2⎦ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ \n",
|
||
" ⎢────⎥ ⎢───⎥ ⎢───⎥ ⎢ ⎥ ⎢ ────────── ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥ \n",
|
||
" ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣1/2⎦ ⎢ 2 ⎥ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ \n",
|
||
" ⎢ ⎥ \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎥ \n",
|
||
" ⎢-√2⋅⎜─ + ─⎟ ⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎥ \n",
|
||
" ⎢────────────⎥ \n",
|
||
" ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎡ ⎛1 ⅈ⎞\n",
|
||
" ⎢ ────────── ⎥ ⎢ ────────── ⎥ ⎢ √2⋅⎜─ - ─⎟\n",
|
||
" ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ──────────\n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎥ ⎡ 0 ⎤ ⎡1/2⎤ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎡0 ⎤ ⎡1/2⎤ ⎢ 2 \n",
|
||
" ⎢-√2⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢-√2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢√2⎥ ⎢1/2⎥ ⎢-√2⋅ⅈ⋅(-1 + \n",
|
||
" ⎢────────────⎥ ⎢──────⎥ ⎢───⎥ ⎢──────────────⎥ ⎢──⎥ ⎢ ⎥ ⎢────────────\n",
|
||
" ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢2 ⎥ ⎢-ⅈ ⎥ ⎢ 4 \n",
|
||
" ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢───⎥, ⎢ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢√2⎥ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ\n",
|
||
" ⎢√2⋅⎜- ─ + ─⎟⎥ ⎢ ── ⎥ ⎢───⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ √2⋅⎜- ─ + ─\n",
|
||
" ⎢ ⎝ 2 2⎠⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢2 ⎥ ⎢ ⅈ ⎥ ⎢ ⎝ 2 2\n",
|
||
" ⎢────────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ──────────── ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ───────────\n",
|
||
" ⎢ 2 ⎥ ⎣ 0 ⎦ ⎣1/2⎦ ⎢ 2 ⎥ ⎣0 ⎦ ⎣ 2 ⎦ ⎢ 2 \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢-√2⋅ⅈ⋅(-1 + \n",
|
||
" ⎢-√2⋅⎜─ + ─⎟ ⎥ ⎢-√2⋅⎜- ─ + ─⎟ ⎥ ⎢────────────\n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎣ 4 \n",
|
||
" ⎢────────────⎥ ⎢──────────────⎥ \n",
|
||
" ⎣ 2 ⎦ ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎤ \n",
|
||
" ⎥ \n",
|
||
" ⎥ ⎡√2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎥ ⎢── - ────⎥ ⎢ ── - ──── ⎥ \n",
|
||
" ⎥ ⎡0 ⎤ ⎡1/2⎤ ⎡ 0 ⎤ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎡√2⎤ ⎡\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢──⎥ ⎢\n",
|
||
"ⅈ) ⎥ ⎢√2⎥ ⎢1/2⎥ ⎡1/2 ⎤ ⎢ √2 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎡1/2 ⎤ ⎢ √2 √2⋅ⅈ ⎥ ⎢2 ⎥ ⎢\n",
|
||
"───⎥ ⎢──⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎥ ⎢2 ⎥ ⎢-ⅈ ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢4 4 ⎥ ⎢1/2 ⎥ ⎢ 4 4 ⎥ ⎢0 ⎥ ⎢\n",
|
||
" ⎥, ⎢ ⎥, ⎢───⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢\n",
|
||
"⎞ ⎥ ⎢√2⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢√2⋅ⅈ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢1/2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢0 ⎥ ⎢\n",
|
||
"⎟ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ⎥ ⎢────⎥ ⎢── + ────⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢\n",
|
||
"⎠ ⎥ ⎢2 ⎥ ⎢ ⅈ ⎥ ⎣1/2 ⎦ ⎢ 2 ⎥ ⎢4 4 ⎥ ⎣-1/2⎦ ⎢ 4 4 ⎥ ⎢√2⎥ ⎢\n",
|
||
"─ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢──⎥ ⎢\n",
|
||
" ⎥ ⎣0 ⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣2 ⎦ ⎣\n",
|
||
" ⎥ ⎢── - ────⎥ ⎢ ── + ──── ⎥ \n",
|
||
"ⅈ) ⎥ ⎣4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
"───⎥ \n",
|
||
" ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡√2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢── + ────⎥ ⎢ ── + ──── ⎥ \n",
|
||
"1/2⎤ ⎡ √2 ⎤ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎡ ⅈ ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡-1\n",
|
||
" ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"1/2⎥ ⎢ 2 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 ⎥ ⎡-1/2⎤ ⎢ √2 ⎥ ⎢1/\n",
|
||
" ⎥ ⎢ ⎥ ⎢── - ────⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ \n",
|
||
" ⅈ ⎥ ⎢ 0 ⎥ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎢1/2⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ ⅈ\n",
|
||
" ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ─\n",
|
||
" 2 ⎥ ⎢ 0 ⎥ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢-√2 ⎥ ⎢1/2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 2\n",
|
||
" ⎥ ⎢ ⎥ ⎢── - ────⎥ ⎢ ── + ──── ⎥ ⎢───⎥ ⎢────⎥ ⎢ ⎥ ⎢──────⎥ ⎢ \n",
|
||
"-ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎣1/2 ⎦ ⎢ 2 ⎥ ⎢ ⅈ\n",
|
||
"───⎥ ⎢────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─\n",
|
||
" 2 ⎦ ⎣ 2 ⎦ ⎢√2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣1/2⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 2\n",
|
||
" ⎢── + ────⎥ ⎢- ── + ────⎥ \n",
|
||
" ⎣4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ 1 ⅈ ⅈ⋅(-\n",
|
||
" ⎢ ── - ──── ⎥ ⎢ ─ - ─ - ────\n",
|
||
"/2⎤ ⎡-ⅈ ⎤ ⎡-ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ 1 ⅈ ⎤ ⎡ √2 ⎤ ⎢ 4 4 \n",
|
||
" ⎥ ⎢─── ⎥ ⎢───⎥ ⎢ ⎥ ⎢ ─ - ─ ⎥ ⎢ ── ⎥ ⎢ \n",
|
||
"2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2 ⎥ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎢ 1 ⅈ⋅(-1 + \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ + ────────\n",
|
||
" ⎥ ⎢1/2 ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 0 ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ ⎢ 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢-1/2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢ 1 ⅈ ⅈ⋅(\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ─ - ───\n",
|
||
" ⎥ ⎢ ⅈ ⎥ ⎢1/2⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎣1/2 ⎦ ⎢-√2⋅ⅈ ⎥ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢──────⎥ ⎢ \n",
|
||
" ⎦ ⎣ 2 ⎦ ⎣1/2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 2⎦ ⎣ 2 ⎦ ⎢ 1 ⅈ⋅(-1 +\n",
|
||
" ⎢- ── - ────⎥ ⎢- ─ + ───────\n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"1 + ⅈ) ⎤ \n",
|
||
"────── ⎥ \n",
|
||
"4 ⎥ ⎡1/2⎤ ⎡√2⎤ ⎡ √2 ⎤ ⎡1/2 ⎤ ⎡ √2 ⎤ ⎡1/2⎤ ⎡1/2⎤ ⎡ √2 ⎤ \n",
|
||
" ⎥ ⎢ ⎥ ⎢──⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ \n",
|
||
"ⅈ) ⅈ ⎥ ⎢-ⅈ ⎥ ⎢2 ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎡1/2 ⎤ ⎢ 2 ⎥ ⎢1/2⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ \n",
|
||
"── - ─ ⎥ ⎢───⎥ ⎢ ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ \n",
|
||
" 4 ⎥ ⎢ 2 ⎥ ⎢0 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥,\n",
|
||
"-1 + ⅈ)⎥ ⎢1/2⎥ ⎢0 ⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢1/2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢ 0 ⎥ \n",
|
||
"───────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" 4 ⎥ ⎢ ⅈ ⎥ ⎢√2⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎣-1/2⎦ ⎢√2⋅ⅈ⎥ ⎢-ⅈ ⎥ ⎢-ⅈ ⎥ ⎢-√2 ⎥ \n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢──⎥ ⎢──────⎥ ⎢ ⎥ ⎢────⎥ ⎢───⎥ ⎢───⎥ ⎢────⎥ \n",
|
||
" ⅈ) ⅈ⎥ ⎣ 2 ⎦ ⎣2 ⎦ ⎣ 2 ⎦ ⎣-1/2⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ \n",
|
||
"─── + ─⎥ \n",
|
||
" 4⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ ⎡\n",
|
||
" ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢\n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢\n",
|
||
" ⎢ ────────── ⎥ ⎢\n",
|
||
" ⎢ 2 ⎥ ⎢\n",
|
||
" ⎢ ⎥ ⎢\n",
|
||
" ⎡1/2⎤ ⎡1/2 ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡1/2 ⎤ ⎡ 0 ⎤ ⎡1/2⎤ ⎡ 0 ⎤ ⎢\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢-√2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎢ ⅈ ⎥ ⎡1/2 ⎤ ⎢-1/2⎥ ⎢ ⎝2 2⎠ ⎥ ⎢-ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢\n",
|
||
" ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢──────────────⎥ ⎢─── ⎥ ⎢──────⎥ ⎢───⎥ ⎢──────⎥ ⎢\n",
|
||
" ⎢ 2 ⎥ ⎢-1/2⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢\n",
|
||
" ⎢ ⎥, ⎢ ⎥, ⎢ ─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢\n",
|
||
" ⎢ ⅈ ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢-1/2⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢ √2⋅ⅈ ⎥ ⎢\n",
|
||
" ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢───⎥ ⎢ ──── ⎥ ⎢\n",
|
||
" ⎢ 2 ⎥ ⎣1/2 ⎦ ⎢ ⅈ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢\n",
|
||
" ⎢ ⎥ ⎢ ─ ⎥ ⎢ ────────── ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢\n",
|
||
" ⎣1/2⎦ ⎣ 2 ⎦ ⎢ 2 ⎥ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎣1/2⎦ ⎣ 0 ⎦ ⎢\n",
|
||
" ⎢ ⎥ ⎢\n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎥ ⎢\n",
|
||
" ⎢-√2⋅ⅈ⋅⎜─ + ─⎟ ⎥ ⎢\n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢\n",
|
||
" ⎢──────────────⎥ ⎢\n",
|
||
" ⎣ 2 ⎦ ⎣\n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎡ ⎛1 ⅈ⎞\n",
|
||
" ────────── ⎥ ⎢ ────────── ⎥ ⎢ √2⋅⎜─ - ─⎟\n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ──────────\n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎡0 ⎤ ⎡1/2⎤ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎡ 0 ⎤ ⎡1/2 ⎤ ⎢ 2 \n",
|
||
"-√2⋅ⅈ⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢-√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢√2⎥ ⎢1/2⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢√2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢√2⋅(-1 + ⅈ)\n",
|
||
"──────────────⎥ ⎢──⎥ ⎢ ⎥ ⎢────────────────⎥ ⎢────⎥ ⎢ ─ ⎥ ⎢───────────\n",
|
||
" 2 ⎥ ⎢2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢───⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢√2⎥ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢ ⎛ 1 ⅈ\n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ── ⎥ ⎢─── ⎥ ⎢√2⋅⎜- ─ + ─\n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢2 ⎥ ⎢ ⅈ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⎝ 2 2\n",
|
||
" ──────────── ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ──────────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢───────────\n",
|
||
" 2 ⎥ ⎣0 ⎦ ⎣ 2 ⎦ ⎢ 2 ⎥ ⎣ 0 ⎦ ⎣-1/2⎦ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢√2⋅(-1 + ⅈ)\n",
|
||
"-√2⋅ⅈ⋅⎜─ + ─⎟ ⎥ ⎢-√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢───────────\n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎣ 4 \n",
|
||
"──────────────⎥ ⎢────────────────⎥ \n",
|
||
" 2 ⎦ ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎤ \n",
|
||
" ⎥ \n",
|
||
" ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ \n",
|
||
" ⎥ ⎡ 0 ⎤ ⎡1/2 ⎤ ⎡1/2 ⎤ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎡1/2⎤ ⎢ 4 4 ⎥ ⎡ √2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── \n",
|
||
" ⎥ ⎢√2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢√2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢────⎥ ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢────⎥ ⎢- ── + ────⎥ ⎢ ─ ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 0 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎞⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢-1/2⎥ ⎢√2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢1/2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 0 \n",
|
||
"⎟⎥ ⎢ ── ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢────⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ \n",
|
||
"⎠⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 ⎥ ⎢√2⋅ⅈ\n",
|
||
"─⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢───⎥ ⎢ ⎥ ⎢────\n",
|
||
" ⎥ ⎣ 0 ⎦ ⎣-1/2⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢- ── + ────⎥ \n",
|
||
" ⎥ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" ⎥ \n",
|
||
" ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⅈ ⎤ \n",
|
||
" ⎢ ─ ⎥ \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 2 ⎥ \n",
|
||
" ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ \n",
|
||
"⎤ ⎡1/2⎤ ⎡ √2 ⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡ 0 \n",
|
||
"⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ \n",
|
||
"⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢√2⋅ⅈ\n",
|
||
"⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ ⎢───────── + ─────────⎥ ⎢────\n",
|
||
"⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 2 ⎥ ⎢ 2 \n",
|
||
"⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ -ⅈ ⎥ ⎢-√2 \n",
|
||
"⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ── + ──── ⎥ ⎢ ─── ⎥ ⎢────\n",
|
||
"⎥ ⎢ 2 ⎥ ⎢-√2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
"⎥ ⎢ ⎥ ⎢────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎦ ⎣1/2⎦ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎣ 0 \n",
|
||
" ⎢- ── + ────⎥ ⎢- ── - ────⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
" ⎢───────── + ─────────⎥ \n",
|
||
" ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ -ⅈ ⎤ \n",
|
||
" ⎢ ─── ⎥ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢ 2 ⎥ ⎢ ── - ──── ⎥ \n",
|
||
"⎤ ⎡-1/2⎤ ⎡ 0 ⎤ ⎡-1/2⎤ ⎢ ⎥ ⎡-ⅈ ⎤ ⎢ 4 4 ⎥ \n",
|
||
"⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢─── ⎥ ⎢ ⎥ \n",
|
||
"⎥ ⎢ ⅈ ⎥ ⎢ √2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ \n",
|
||
"⎥ ⎢ ─ ⎥ ⎢ ──── ⎥ ⎢ ─ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎥ ⎢- ── + ────⎥ \n",
|
||
"⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ───────── + ───────── ⎥ ⎢-1/2⎥ ⎢ 4 4 ⎥ \n",
|
||
"⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ 2 2 ⎥, ⎢ ⎥, ⎢ ⎥,\n",
|
||
"⎥ ⎢1/2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ ⅈ ⎥ ⎢ ⎥ ⎢1/2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ \n",
|
||
"⎥ ⎢ ⎥ ⎢──────⎥ ⎢ ─ ⎥ ⎢ -1/2 ⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ \n",
|
||
"⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ \n",
|
||
"⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ─ ⎥ ⎢ ⎥ \n",
|
||
"⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎣-1/2⎦ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ── - ──── ⎥ \n",
|
||
" ⎢─────────── + ─────────⎥ ⎣ 4 4 ⎦ \n",
|
||
" ⎣ 2 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ \n",
|
||
" ⎡ 1 ⅈ ⅈ⋅(-1 + ⅈ) ⎤ ⎢ ⎝2 2⎠ \n",
|
||
" ⎢ ─ - ─ - ────────── ⎥ ⎢ ────────── \n",
|
||
" ⎡ 1 ⅈ ⎤ ⎢ 4 4 4 ⎥ ⎢ 2 \n",
|
||
" ⎢ ─ - ─ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ 2 2 ⎥ ⎡1/2⎤ ⎡√2⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⎥ ⎢√2⋅⎜- ─ + ─⎟\n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢-ⅈ ⎥ ⎢2 ⎥ ⎢ 1 ⅈ ⎝2 2⎠ ⎥ ⎢ ⎝ 2 2⎠\n",
|
||
" ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢───⎥ ⎢ ⎥ ⎢ ─ - ─ + ───────── ⎥ ⎢────────────\n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢0 ⎥ ⎢ 4 4 2 ⎥ ⎢ 2 \n",
|
||
" ⎢─────────── + ─────────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎢ 2 2 ⎥ ⎢1/2⎥ ⎢0 ⎥ ⎢ 1 ⅈ ⅈ⋅(-1 + ⅈ)⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ─ + ─ - ──────────⎥ ⎢ √2⋅⎜─ + ─⎟ \n",
|
||
" ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢√2⎥ ⎢ 4 4 4 ⎥ ⎢ ⎝2 2⎠ \n",
|
||
" ⎢ ⎥ ⎢ ─ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ────────── \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎣ 2 ⎦ ⎣2 ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 2 \n",
|
||
" ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎣ ⎝ 2 2⎠ ⎦ ⎢1 ⎝ 2 2⎠ ⅈ ⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" ⎢─ + ─────────── - ─ ⎥ ⎢ √2⋅⎜─ + ─⎟ \n",
|
||
" ⎣4 2 4 ⎦ ⎢ ⎝2 2⎠ \n",
|
||
" ⎢ ────────── \n",
|
||
" ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎤ ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
"⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ \n",
|
||
"⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 \n",
|
||
"⎥ ⎡ 1/2 ⎤ ⎢ ────────── ⎥ ⎢ ────────── - ────────\n",
|
||
"⎥ ⎢ ⎥ ⎢ 2 ⎥ ⎢ 4 4 \n",
|
||
"⎥ ⎢ ⅈ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎥ ⎢ ─ ⎥ ⎡1/2 ⎤ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛\n",
|
||
"⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜\n",
|
||
"⎥ ⎢ ⎥ ⎢ ⅈ ⎥ ⎢ ⎝ 2 2⎠⎥ ⎢ ⎝ 2 2⎠ ⎝\n",
|
||
"⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ─ ⎥ ⎢────────────⎥ ⎢────────────── - ──────\n",
|
||
"⎥ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 4 4\n",
|
||
"⎥, ⎢ ⎝2 2⎠ ⎝2 2⎠⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎥ ⎢- ───────── + ─────────⎥ ⎢-ⅈ ⎥ ⎢ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛1\n",
|
||
"⎥ ⎢ 2 2 ⎥ ⎢─── ⎥ ⎢√2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─\n",
|
||
"⎥ ⎢ ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝2\n",
|
||
"⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎥ ⎢────────────⎥ ⎢ - ──────────── + ─────\n",
|
||
"⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎣-1/2⎦ ⎢ 2 ⎥ ⎢ 4 4\n",
|
||
"⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎥ ⎢─────────── - ─────────⎥ ⎢ ⎛1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 \n",
|
||
"⎥ ⎣ 2 2 ⎦ ⎢√2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢√2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ \n",
|
||
"⎥ ⎢ ⎝2 2⎠⎥ ⎢ ⎝ 2 2⎠ ⎝2 \n",
|
||
"⎥ ⎢────────────⎥ ⎢──────────── + ────────\n",
|
||
"⎦ ⎣ 2 ⎦ ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"+ ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"──── + ────────── + ──────────── ⎥ ⎢ ────────── - ──────────── + ──\n",
|
||
" 4 4 ⎥ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
"1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡1/2⎤ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ \n",
|
||
"2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⅈ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ \n",
|
||
"────── + ──────────── + ──────────⎥ ⎢ ─ ⎥ ⎢ ────────────── - ──────────── + \n",
|
||
" 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⅈ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ ─ ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"───── + ──────────── + ────────── ⎥ ⎢ ⎥ ⎢ - ────────── + ────────── + ───\n",
|
||
" 4 4 ⎥ ⎣1/2⎦ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
"+ ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ \n",
|
||
"──── + ────────── - ──────────────⎥ ⎢- ────────── + ────────────── + ─\n",
|
||
" 4 4 ⎦ ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ \n",
|
||
"⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢ √2⋅\n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"──────── + ──────────── ⎥ ⎢ ────────── ⎥ ⎡ 1/2 ⎤ ⎢ ───\n",
|
||
" 4 4 ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⅈ ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
"√2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢ 2 ⎥ ⎢ √2⋅\n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"──────────── + ────────── ⎥ ⎢ ────────── ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ───\n",
|
||
" 4 4 ⎥ ⎢ 2 ⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎝2 2⎠ ⎝2 2⎠⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢- ───────── + ─────────⎥ ⎢ \n",
|
||
"ⅈ⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ 2 2 ⎥ ⎢ √2⋅ⅈ\n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"───────── + ──────────── ⎥ ⎢ ────────── ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ────\n",
|
||
" 4 4 ⎥ ⎢ 2 ⎥ ⎢ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢───────── - ───────────⎥ ⎢ \n",
|
||
"2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ ⎣ 2 2 ⎦ ⎢√2⋅ⅈ⋅\n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝ 2 2⎠⎥ ⎢ \n",
|
||
"─────────── + ────────────⎥ ⎢────────────⎥ ⎢─────\n",
|
||
" 4 4 ⎦ ⎣ 2 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ \n",
|
||
"⎜─ + ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ √\n",
|
||
"⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"─────── ⎥ ⎢ - ──────────── + ────────── + ──────────── + ────────── ⎥ ⎢ - ─\n",
|
||
" 2 ⎥ ⎢ 4 4 4 4 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎛1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛\n",
|
||
"⎜─ + ─⎟ ⎥ ⎢√2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢√2⋅⎜\n",
|
||
"⎝2 2⎠ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⎝\n",
|
||
"─────── ⎥ ⎢──────────── + ──────────── + ────────── - ──────────────⎥ ⎢────\n",
|
||
" 2 ⎥ ⎢ 4 4 4 4 ⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √\n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"──────── ⎥ ⎢ ────────── - ──────────── + ────────── + ──────────── ⎥ ⎢ - ─\n",
|
||
" 2 ⎥ ⎢ 4 4 4 4 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎛ 1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
"⎜- ─ + ─⎟⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢√2⋅ⅈ\n",
|
||
"⎝ 2 2⎠⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
"─────────⎥ ⎢────────────── - ──────────── + ──────────── + ──────────⎥ ⎢────\n",
|
||
" 2 ⎦ ⎣ 4 4 4 4 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" ⎡ \n",
|
||
" ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎢ \n",
|
||
"2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"─────────── + ────────── + ──────────── + ────────── ⎥ ⎢ \n",
|
||
" 4 4 4 4 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ \n",
|
||
" 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛\n",
|
||
"- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜\n",
|
||
" 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝\n",
|
||
"──────── + ──────────── + ────────── - ──────────────⎥ ⎢───────────────── - ─\n",
|
||
" 4 4 4 4 ⎥ ⎢ 2 \n",
|
||
" ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"───────── + ──────────── + ────────── + ──────────── ⎥ ⎢ ⎛1 ⅈ⎞\n",
|
||
" 4 4 4 4 ⎥ ⎢ ⎜─ - ─⎟\n",
|
||
" ⎥ ⎢ ⎝2 2⎠\n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
"⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛\n",
|
||
"────────── - ──────────── + ──────────── + ──────────⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜\n",
|
||
" 4 4 4 4 ⎦ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝\n",
|
||
" ⎢───────────────── + ─\n",
|
||
" ⎣ 2 \n",
|
||
"\n",
|
||
" 2 2 ⎤ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
" ⎜─ - ─⎟ ⎜─ + ─⎟ ⎥ ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅\n",
|
||
" ──────── + ──────── ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
" 2 2 ⎥ ⎢ ────────── ⎥ ⎢ ───\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢ ⎥ ⎢ \n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎡-ⅈ ⎤ ⎢ ⎛\n",
|
||
"─ - ─⎟⋅⎜─ + ─⎟ ⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ ⎢─── ⎥ ⎢ √2⋅⎜\n",
|
||
"2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝ 2 2⎠⎥ ⎢ 2 ⎥ ⎢ ⎝\n",
|
||
"────────────── + ──────── + ─────────────────⎥ ⎢────────────⎥ ⎢ ⎥ ⎢ ────\n",
|
||
" 2 2 2 ⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" 2 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢1/2 ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢-√2⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢-√2⋅ⅈ\n",
|
||
" ⎜─ - ─⎟ ⎜─ + ─⎟ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⅈ ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢────────────⎥ ⎢ ─ ⎥ ⎢─────\n",
|
||
"⋅⎜─ + ─⎟ + ──────── - ──────── ⎥ ⎢ 2 ⎥ ⎣ 2 ⎦ ⎢ \n",
|
||
" ⎝2 2⎠ 2 2 ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢-√2⋅⎜─ + ─⎟ ⎥ ⎢-√2⋅ⅈ\n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"─ - ─⎟⋅⎜─ + ─⎟ ⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢────────────⎥ ⎢─────\n",
|
||
"2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎣ 2 ⎦ ⎣ \n",
|
||
"────────────── - ──────── + ─────────────────⎥ \n",
|
||
" 2 2 2 ⎦ \n",
|
||
"\n",
|
||
" ⎡ \n",
|
||
" ⎢ ⎛1 ⅈ\n",
|
||
"⎛1 ⅈ⎞ ⎤ ⎢ ⎜─ - ─\n",
|
||
"⎜─ - ─⎟ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝2 2\n",
|
||
"⎝2 2⎠ ⎥ ⎢ ⎜─ - ─⎟⋅⎜─ + ─⎟ + ──────\n",
|
||
"─────── ⎥ ⎡ -ⅈ ⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠ 2 \n",
|
||
" 2 ⎥ ⎢ ─── ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" 1 ⅈ⎞ ⎥ ⎢ ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"- ─ + ─⎟ ⎥ ⎢ -1/2 ⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ \n",
|
||
" 2 2⎠ ⎥ ⎢ ⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"──────── ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢───────────────── + ─────────────── - \n",
|
||
" 2 ⎥ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ 2 2 \n",
|
||
" ⎥, ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ ───────── + ───────── ⎥ ⎢ \n",
|
||
"⋅⎜─ + ─⎟ ⎥ ⎢ 2 2 ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ \n",
|
||
"─────────⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" 2 ⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢───────────────── + ─────────────── - \n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 2 2 \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢─────────── + ─────────⎥ ⎢ \n",
|
||
"⋅⎜─ + ─⎟ ⎥ ⎣ 2 2 ⎦ ⎢ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ ⎛ 1 \n",
|
||
"─────────⎥ ⎢ ⎜- ─ +\n",
|
||
" 2 ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎝ 2 \n",
|
||
" ⎢ ⎜- ─ + ─⎟⋅⎜─ + ─⎟ + ──────\n",
|
||
" ⎣ ⎝ 2 2⎠ ⎝2 2⎠ 2 \n",
|
||
"\n",
|
||
" 2 2 ⎤ \n",
|
||
"⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"⎟ ⎜─ + ─⎟ ⎥ ⎡ ⎛1 ⅈ⎞ \n",
|
||
"⎠ ⎝2 2⎠ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅\n",
|
||
"── - ──────── ⎥ ⎢ ⎝2 2⎠ \n",
|
||
" 2 ⎥ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎢ ────────── - ───\n",
|
||
" ⎥ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢ 4 \n",
|
||
" 2 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ \n",
|
||
"⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢- ───────── + ─────────⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ 2 2 ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √\n",
|
||
"⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"──────── + ─────────────────⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ────────────── - ─\n",
|
||
" 2 2 ⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥, ⎢ \n",
|
||
" 2 ⎥ ⎢─────────── - ─────────⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
"⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 2 2 ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ \n",
|
||
"⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ⎝2 2⎠ \n",
|
||
"⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 1/2 ⎥ ⎢ - ──────────── - \n",
|
||
"──────── + ─────────────────⎥ ⎢ ⎥ ⎢ 4 \n",
|
||
" 2 2 ⎥ ⎢ ⅈ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" 2 2 ⎥ ⎣ 2 ⎦ ⎢ √2⋅⎜- ─ + ─⎟ √2\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
" ─⎟ ⎜─ + ─⎟ ⎥ ⎢- ──────────── - ──\n",
|
||
" 2⎠ ⎝2 2⎠ ⎥ ⎣ 4 \n",
|
||
"──── - ──────── ⎥ \n",
|
||
" 2 ⎦ \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ \n",
|
||
"ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ + \n",
|
||
"───────── + ────────── + ──────────── ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 \n",
|
||
" 4 4 4 ⎥ ⎢ ─────────────── - ───────────────\n",
|
||
" ⎥ ⎢ 2 2 \n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
"─────────── + ──────────── + ────────── ⎥ ⎢⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ + ─\n",
|
||
" 4 4 4 ⎥ ⎢⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2\n",
|
||
" ⎥, ⎢─────────────── - ────────────────\n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 2 2 \n",
|
||
"√2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎛ 1 ⅈ⎞\n",
|
||
"──────────── - ────────── + ────────── ⎥ ⎢ ⎜- ─ + ─⎟\n",
|
||
" 4 4 4 ⎥ ⎢ ⎝ 2 2⎠\n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ \n",
|
||
"⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⎛ 1 \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⎜- ─ \n",
|
||
"────────── + ────────── - ──────────────⎥ ⎣ ⎝ 2 \n",
|
||
" 4 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎡ \n",
|
||
" 2 ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ ⎢ \n",
|
||
"ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢ ⅈ⋅(-1 + \n",
|
||
"─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ ────────── ⎥ ⎢ ────────\n",
|
||
"── + ──────── + ───────────────── ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" 2 2 ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎡ ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢⎛1 ⅈ⎞ ⎛1 \n",
|
||
" 2 ⎥ ⎢ ─ ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢⎜─ - ─⎟⋅⎜─ + \n",
|
||
"⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢⎝2 2⎠ ⎝2 \n",
|
||
"⎟ ⎜- ─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ ────────── ⎥ ⎢─────────────\n",
|
||
"⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢1/2⎥ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
"─ + ────────── + ─────────────────⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" 2 2 ⎥ ⎢1/2⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ -√2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢⎜- ─ + ─⎟⋅⎜─ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢ ⅈ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢⎝ 2 2⎠ ⎝2 \n",
|
||
"⋅⎜─ - ─⎟ ⎥ ⎢ ─ ⎥ ⎢ ────────────── ⎥ ⎢─────────────\n",
|
||
" ⎝2 2⎠ ⎥ ⎣ 2 ⎦ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎥ ⎢-√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛\n",
|
||
"+ ─⎟ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ ⎜- ─ + ─⎟⋅⎜\n",
|
||
" 2⎠ ⎦ ⎢────────────────⎥ ⎢ ⎝ 2 2⎠ ⎝\n",
|
||
" ⎣ 2 ⎦ ⎢ ───────────\n",
|
||
" ⎣ 2 \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"────────── + ─────────────── + ──────── - ────────────────── ⎥ \n",
|
||
"4 2 2 4 ⎥ \n",
|
||
" ⎥ \n",
|
||
"ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎡ 0 ⎤ ⎡\n",
|
||
"─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢\n",
|
||
"2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ √2 ⎥ ⎢\n",
|
||
"── + ──────────────────── + ───────────────── - ──────────────────⎥ ⎢ ── ⎥ ⎢\n",
|
||
" 4 2 4 ⎥ ⎢ 2 ⎥ ⎢\n",
|
||
" ⎥, ⎢ ⎥, ⎢\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢√2⋅ⅈ⎥ ⎢\n",
|
||
"+ ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟⎥ ⎢────⎥ ⎢\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢\n",
|
||
"──── + ────────────────── + ───────────────── - ──────────────────⎥ ⎢ ⎥ ⎢\n",
|
||
" 4 2 4 ⎥ ⎣ 0 ⎦ ⎣\n",
|
||
" ⎥ \n",
|
||
" 2 ⎥ \n",
|
||
"1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ ⎜- ─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ \n",
|
||
"2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"────── + ──────────────────── + ────────── - ────────────────── ⎥ \n",
|
||
" 4 2 4 ⎦ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⅈ ⎤ ⎡ ⅈ ⎤ ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎡ ⅈ ⎤ ⎢ 4 4 ⎥ ⎡√2⋅ⅈ⎤ ⎡ ⅈ ⎤ ⎡√2\n",
|
||
" ─ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢────⎥ ⎢ ─ ⎥ ⎢──\n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ √2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"1/2⎥ ⎢1/2⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢1/2 ⎥ ⎢ 4 4 ⎥ ⎢ 0 ⎥ ⎢1/2 ⎥ ⎢ 0\n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"1/2⎥ ⎢-ⅈ ⎥ ⎢-√2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢-1/2⎥ ⎢ 0\n",
|
||
" ⎥ ⎢───⎥ ⎢────⎥ ⎢- ── + ────⎥ ⎢ ─ ⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢√2\n",
|
||
" ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢─── ⎥ ⎢──\n",
|
||
" 2 ⎦ ⎣1/2⎦ ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣-1/2⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2\n",
|
||
" ⎢ ── - ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ⎤ ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
" ⎢- ── + ────⎥ ⎢- ── + ────⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜─ + ─⎟⎥ \n",
|
||
"⋅ⅈ⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎡ 0 ⎤ ⎡-ⅈ ⎤ \n",
|
||
"──⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ───────── + ─────────⎥ ⎢ ⎥ ⎢───⎥ \n",
|
||
" ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ √2 ⎥ ⎢ 2 ⎥ \n",
|
||
" ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ \n",
|
||
" ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 1/2 ⎥ ⎢ 2 ⎥ ⎢1/2⎥ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥,\n",
|
||
" ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢-√2⋅ⅈ ⎥ ⎢ ⅈ ⎥ \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢- ── + ────⎥ ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎢──────⎥ ⎢ ─ ⎥ \n",
|
||
"⋅ⅈ⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ \n",
|
||
"──⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ───────── + ─────────⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 2 ⎥ ⎣ 0 ⎦ ⎣1/2⎦ \n",
|
||
" ⎢ ── + ──── ⎥ ⎢- ── + ────⎥ ⎢ ⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 1/2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎤ \n",
|
||
" ⎢ ⅈ⋅⎜─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ── + ──── ⎥ ⎡ ⎛1 ⅈ⎞ \n",
|
||
" ⎡0 ⎤ ⎡-ⅈ ⎤ ⎢- ───────── + ─────────⎥ ⎡1/2⎤ ⎢ 4 4 ⎥ ⎢ⅈ⋅⎜─ - ─⎟ ⅈ\n",
|
||
" ⎢ ⎥ ⎢─── ⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎝2 2⎠ \n",
|
||
" ⎢√2⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢───────── - ─\n",
|
||
" ⎢──⎥ ⎢ ⎥ ⎢ 1/2 ⎥ ⎢ ─ ⎥ ⎢ ── + ──── ⎥ ⎢ 2 \n",
|
||
" ⎢2 ⎥ ⎢1/2 ⎥ ⎢ ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ \n",
|
||
" ⎢ ⎥, ⎢ ⎥, ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥, ⎢ ⎥, ⎢ ⎥, ⎢ 0 \n",
|
||
" ⎢√2⎥ ⎢-1/2⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ + ─⎟⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ \n",
|
||
" ⎢──⎥ ⎢ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ─ ⎥ ⎢ ── + ──── ⎥ ⎢ 0 \n",
|
||
" ⎢2 ⎥ ⎢ ⅈ ⎥ ⎢─────────── - ─────────⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ \n",
|
||
" ⎢ ⎥ ⎢ ─ ⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 1 \n",
|
||
" ⎣0 ⎦ ⎣ 2 ⎦ ⎢ ⎥ ⎣1/2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎢ - ─ +\n",
|
||
" ⎢ ⅈ ⎥ ⎢- ── - ────⎥ ⎣ 2 \n",
|
||
" ⎢ ─ ⎥ ⎣ 4 4 ⎦ \n",
|
||
" ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" ⎢ 1 ⅈ ⎝2 2⎠ ⎥ ⎡ √2 √2⋅ⅈ ⎤ \n",
|
||
" ⎛ 1 ⅈ⎞⎤ ⎢ - ─ + ─ + ───────── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
"⋅⎜- ─ + ─⎟⎥ ⎡ ⅈ ⎤ ⎡ √2⋅ⅈ ⎤ ⎢ 4 4 2 ⎥ ⎡1/2 ⎤ ⎢ 4 4 ⎥ \n",
|
||
" ⎝ 2 2⎠⎥ ⎢ ─ ⎥ ⎢ ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
"──────────⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ \n",
|
||
" 2 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ + ────────── - ─ ⎥ ⎢─── ⎥ ⎢- ── - ────⎥ \n",
|
||
" ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ ⎢ 4 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥,\n",
|
||
" ⎥ ⎢ ⅈ ⎥ ⎢ 0 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ \n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ ─ ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 1 ⎝ 2 2⎠ ⅈ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ \n",
|
||
" ⅈ ⎥ ⎢ ⎥ ⎢──────⎥ ⎢- ─ + ─────────── + ─⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ─ ⎥ ⎣1/2 ⎦ ⎣ 2 ⎦ ⎢ 4 2 4⎥ ⎣-1/2⎦ ⎢ √2 √2⋅ⅈ ⎥ \n",
|
||
" 2 ⎦ ⎢ ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎣ 4 4 ⎦ \n",
|
||
" ⎢- ─ + ────────── + ─ ⎥ \n",
|
||
" ⎣ 4 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ\n",
|
||
" ⎢ ── + ──── ⎥ ⎢ ── + ──── ⎥ ⎢ ── + ────\n",
|
||
" ⎢ 4 4 ⎥ ⎡1/2 ⎤ ⎡ 1 ⅈ ⎤ ⎢ 4 4 ⎥ ⎡1 ⅈ⎤ ⎡ ⅈ ⎤ ⎢ 4 4 \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ─ + ─ ⎥ ⎢ ⎥ ⎢─ + ─⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
" ⎢ √2 √2⋅ⅈ⎥ ⎢-ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢2 2⎥ ⎢ 2 ⎥ ⎢ √2 √2⋅\n",
|
||
" ⎢- ── - ────⎥ ⎢─── ⎥ ⎢ ⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ───\n",
|
||
" ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 4 4 ⎥ ⎢ 0 ⎥ ⎢-1/2⎥ ⎢ 4 4 \n",
|
||
" ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎢ √2 √2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢1/2 ⎥ ⎢ √2 √2⋅\n",
|
||
" ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢- ── - ───\n",
|
||
" ⎢ 4 4 ⎥ ⎢-ⅈ ⎥ ⎢ 1 ⅈ⎥ ⎢ 4 4 ⎥ ⎢1 ⅈ⎥ ⎢-ⅈ ⎥ ⎢ 4 4 \n",
|
||
" ⎢ ⎥ ⎢─── ⎥ ⎢- ─ - ─⎥ ⎢ ⎥ ⎢─ - ─⎥ ⎢─── ⎥ ⎢ \n",
|
||
" ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 ⎦ ⎣ 2 2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣2 2⎦ ⎣ 2 ⎦ ⎢ √2 √2⋅\n",
|
||
" ⎢ ── - ──── ⎥ ⎢- ── + ────⎥ ⎢- ── - ───\n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎣ 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎢- ──────────── + ────────── + ──────────── \n",
|
||
" ⎤ ⎢ 4 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎥ ⎡ ⅈ ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ \n",
|
||
"ⅈ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"─⎥ ⎢ ⎥ ⎢- ─ - ─⎥ ⎢- ─ - ─⎥ ⎢- ────────── - ──────────── + ────────── - \n",
|
||
" ⎥ ⎢-1/2⎥ ⎢ 2 2⎥ ⎢ 2 2⎥ ⎢ 4 4 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"ⅈ⎥ ⎢ ⅈ ⎥ ⎢ 1 ⅈ ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"─⎥ ⎢ ─ ⎥ ⎢ ─ + ─ ⎥ ⎢- ─ + ─⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 2 2 ⎥ ⎢ 2 2⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ────────── - ──────────── + ────────── + ─\n",
|
||
"ⅈ⎥ ⎣1/2 ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎢ 4 4 4 \n",
|
||
"─⎥ ⎢ \n",
|
||
" ⎦ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎢- ──────────── - ──────────── - ────────── \n",
|
||
" ⎣ 4 4 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞⎤ ⎡ ⎛1 ⅈ⎞ \n",
|
||
" √2⋅⎜─ + ─⎟⎥ ⎢ √2⋅⎜─ - ─⎟ √2\n",
|
||
" ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ \n",
|
||
"+ ──────────⎥ ⎢ ────────── - ──\n",
|
||
" 4 ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 \n",
|
||
" ⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞⎥ ⎡1/2⎤ ⎢ 4 4 ⎥ ⎡1/2⎤ ⎢ 4 4 ⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
"√2⋅ⅈ⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ \n",
|
||
" ⎝2 2⎠⎥ ⎢-ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ ⎝2 2⎠ \n",
|
||
"────────────⎥ ⎢───⎥ ⎢ ── - ──── ⎥ ⎢───⎥ ⎢ ── - ──── ⎥ ⎢ - ──────────── -\n",
|
||
" 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ 4 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎥ ⎢-ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢1/2⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢───⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢- ── + ────⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
" ⎝2 2⎠ ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢ ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"─────────── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ────────────── - \n",
|
||
" 4 ⎥ ⎣1/2⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢- ── - ────⎥ ⎢ ── - ──── ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" √2⋅⎜─ + ─⎟⎥ ⎢ √2⋅⎜- ─ + ─⎟ √\n",
|
||
" ⎝2 2⎠⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
"+ ──────────⎥ ⎢- ──────────── - ─\n",
|
||
" 4 ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 \n",
|
||
"⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 \n",
|
||
"────────── + ────────── + ──────────── ⎥ ⎢ ──────\n",
|
||
" 4 4 4 ⎥ ⎡ √2 √2⋅ⅈ ⎤ ⎢ 4 \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 ⎥ ⎡ 1 ⅈ ⎤ ⎢ \n",
|
||
" √2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ─ + ─ ⎥ ⎢ √2⋅ⅈ⋅\n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
" ──────────── - ────────── + ────────── ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢- ─────\n",
|
||
" 4 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 0 ⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎢ \n",
|
||
"√2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅⎜─ + ─⎟ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎢ \n",
|
||
"──────────── + ──────────── + ────────── ⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢ \n",
|
||
" 4 4 4 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 2⎦ ⎢ \n",
|
||
" ⎥ ⎢- ── - ────⎥ ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎣ 4 4 ⎦ ⎢ \n",
|
||
"2⋅ⅈ⋅⎜─ + ─⎟ √2⋅⎜─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ \n",
|
||
"─────────── + ────────── - ──────────────⎥ ⎢ \n",
|
||
" 4 4 4 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
"- ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
" 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"──── + ──────────── - ────────────── + ──────────── ⎥ \n",
|
||
" 4 4 4 ⎥ ⎡ √2 √2⋅ⅈ⎤ \n",
|
||
" ⎥ ⎢- ── + ────⎥ \n",
|
||
"⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ 4 4 ⎥ ⎡ ⅈ ⎤ \n",
|
||
"⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢ ─ ⎥ \n",
|
||
"⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 2 ⎥ \n",
|
||
"─────── - ────────── + ──────────── - ──────────────⎥ ⎢- ── + ────⎥ ⎢ ⎥ \n",
|
||
"4 4 4 4 ⎥ ⎢ 4 4 ⎥ ⎢-1/2⎥ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢-ⅈ ⎥ \n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ── + ──── ⎥ ⎢─── ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ \n",
|
||
" ──────────── ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" 2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣-1/2⎦ \n",
|
||
" ⎥ ⎢- ── - ────⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎣ 4 4 ⎦ \n",
|
||
" -√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎥ \n",
|
||
" ──────────────── ⎥ \n",
|
||
" 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
"⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
"⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎥ \n",
|
||
"⎢ ───────────── + ────────── + ─────────── + ──────────── ⎥ ⎢ ────────── ⎥ \n",
|
||
"⎢ 8 4 8 4 ⎥ ⎢ 2 ⎥ \n",
|
||
"⎢ ⎥ ⎢ ⎥ \n",
|
||
"⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ \n",
|
||
"⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ ⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ \n",
|
||
"⎢ ⎝2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎥ ⎢ ⎝ 2 2⎠⎥ \n",
|
||
"⎢ - ──────────── + ───────────── - ────────── + ─────────── ⎥ ⎢────────────⎥ \n",
|
||
"⎢ 4 8 4 8 ⎥ ⎢ 2 ⎥ \n",
|
||
"⎢ ⎥, ⎢ ⎥,\n",
|
||
"⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ \n",
|
||
"⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ \n",
|
||
"⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅(-1 + ⅈ)⎥ ⎢ ⎝ 2 2⎠⎥ \n",
|
||
"⎢────────────── + ───────────── + ──────────── + ───────────⎥ ⎢────────────⎥ \n",
|
||
"⎢ 4 8 4 8 ⎥ ⎢ 2 ⎥ \n",
|
||
"⎢ ⎥ ⎢ ⎥ \n",
|
||
"⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞⎥ \n",
|
||
"⎢ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ \n",
|
||
"⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ ⎝ 2 2⎠⎥ \n",
|
||
"⎢───────────── - ──────────── + ─────────── - ──────────────⎥ ⎢────────────⎥ \n",
|
||
"⎣ 8 4 8 4 ⎦ ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅⎜- \n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝ \n",
|
||
" ⎢ ────────── ⎥ ⎢ ────────── + ──────\n",
|
||
" ⎢ 2 ⎥ ⎢ 4 4\n",
|
||
" ⎡ 0 ⎤ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ ⎥ ⎡ 0 ⎤ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" ⎢ 1 ⅈ ⎥ ⎢ ⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎢ - ─ + ─ ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ⎢ 2 2 ⎥ ⎢- ─ + ─⎥ ⎢ ──────────── ⎥ ⎢ \n",
|
||
" ⎢ ⎥ ⎢ 2 2⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎢ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ 1 ⅈ ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ ─ - ─ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅\n",
|
||
" ⎢───────── - ───────────⎥ ⎢ 2 2 ⎥ ⎢ ⎝ 2 2⎠⎥ ⎢ ⎝2 2⎠ \n",
|
||
" ⎢ 2 2 ⎥ ⎢ ⎥ ⎢──────────────⎥ ⎢- ──────────── + ───\n",
|
||
" ⎢ ⎥ ⎣ 0 ⎦ ⎢ 2 ⎥ ⎢ 4 \n",
|
||
" ⎣ 0 ⎦ ⎢ ⎥ ⎢ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ \n",
|
||
" ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ \n",
|
||
" ⎢ ⎝ 2 2⎠⎥ ⎢ \n",
|
||
" ⎢──────────────⎥ ⎢ \n",
|
||
" ⎣ 2 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ\n",
|
||
"─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢√2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─\n",
|
||
"2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2\n",
|
||
"────── - ────────────── + ──────────── ⎥ ⎢────────── + ───────────\n",
|
||
" 4 4 ⎥ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎡ 0 ⎤ ⎢ \n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢ √2\n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢ 1 ⅈ⎥ ⎢ \n",
|
||
" ──────────── ⎥ ⎢- ─ + ─⎥ ⎢ ──\n",
|
||
" 2 ⎥ ⎢ 2 2⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ 1 ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1\n",
|
||
"ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟⎥ ⎢- ─ + ─⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─\n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢ 2 2⎥ ⎢ ⎝ 2 2⎠ ⎝ 2\n",
|
||
"─────────── + ────────── + ────────────⎥ ⎢ ⎥ ⎢────────────── - ───────\n",
|
||
" 4 4 4 ⎥ ⎣ 0 ⎦ ⎢ 4 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎢ √2⋅\n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ──────────── ⎥ ⎢ ───\n",
|
||
" 2 ⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎤ ⎡ ⎛ 1 ⅈ⎞⎤ \n",
|
||
"⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ \n",
|
||
"⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝ 2 2⎠⎥ \n",
|
||
"─ - ────────────── + ────────────⎥ ⎢────────────⎥ \n",
|
||
" 4 4 ⎥ ⎢ 2 ⎥ \n",
|
||
" ⎥ ⎢ ⎥ ⎡ 0 ⎤ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ ⎥ \n",
|
||
"⋅⎜- ─ + ─⎟ ⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ ⎢ 1 ⅈ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢ ⎝ 2 2⎠⎥ ⎢ - ─ + ─ ⎥ \n",
|
||
"────────── ⎥ ⎢────────────⎥ ⎢ 2 2 ⎥ \n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ ⎥ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥,\n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥ \n",
|
||
" + ─⎟ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ \n",
|
||
" 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎝2 2⎠ ⎥ ⎢─────────── - ─────────⎥ \n",
|
||
"───── + ────────── + ────────────⎥ ⎢ ────────── ⎥ ⎢ 2 2 ⎥ \n",
|
||
" 4 4 ⎥ ⎢ 2 ⎥ ⎢ ⎥ \n",
|
||
" ⎥ ⎢ ⎥ ⎣ 0 ⎦ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ \n",
|
||
"ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ \n",
|
||
" ⎝ 2 2⎠ ⎥ ⎢ ⎝ 2 2⎠⎥ \n",
|
||
"─────────── ⎥ ⎢────────────⎥ \n",
|
||
" 2 ⎦ ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛ 1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ\n",
|
||
" ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─\n",
|
||
" ⎢ ⎝ 2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2\n",
|
||
" ⎢ ──────────── ⎥ ⎢- ──────────── + ────────────── + ────────── + ───────────\n",
|
||
" ⎢ 2 ⎥ ⎢ 4 4 4 4 \n",
|
||
" ⎢ ⎥ ⎢ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ √2⋅⎜- ─ + ─⎟ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
" ⎢ ──────────── ⎥ ⎢ ──────────── \n",
|
||
" ⎢ 2 ⎥ ⎢ 2 \n",
|
||
" ⎢ ⎥, ⎢ \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞\n",
|
||
" ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟\n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠\n",
|
||
" ⎢ ──────────── ⎥ ⎢ ────────── + ──────────── - ────────────── + ────────────\n",
|
||
" ⎢ 2 ⎥ ⎢ 4 4 4 4 \n",
|
||
" ⎢ ⎥ ⎢ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ √2⋅⎜- ─ + ─⎟ \n",
|
||
" ⎢ ⎝ 2 2⎠⎥ ⎢ ⎝ 2 2⎠ \n",
|
||
" ⎢──────────────⎥ ⎢ ──────────── \n",
|
||
" ⎣ 2 ⎦ ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎞⎤ ⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ \n",
|
||
"⎟⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟⎥ ⎡ \n",
|
||
"⎠⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠⎥ ⎢⎛ 1 ⅈ⎞ \n",
|
||
"─⎥ ⎢- ──────────── + ────────────── + ────────── + ────────────⎥ ⎢⎜- ─ + ─⎟⋅\n",
|
||
" ⎥ ⎢ 4 4 4 4 ⎥ ⎢⎝ 2 2⎠ \n",
|
||
" ⎥ ⎢ ⎥ ⎢──────────\n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ──────────── ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢⎛1 ⅈ⎞ ⎛1\n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢⎜─ - ─⎟⋅⎜─\n",
|
||
" ⎥ ⎢ ────────────── - ────────── + ──────────── + ──────────── ⎥ ⎢⎝2 2⎠ ⎝2\n",
|
||
" ⎥ ⎢ 4 4 4 4 ⎥ ⎢──────────\n",
|
||
" ⎥ ⎢ ⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ────────────── ⎥ ⎣ \n",
|
||
" ⎦ ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" 2 ⎤ ⎢ √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
"⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎝2 2⎠ ⎥ \n",
|
||
"⎜─ + ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ────────── ⎥ \n",
|
||
"⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ \n",
|
||
"─────── + ─────────────── + ──────── - ─────────────────⎥ ⎢ ⎥ \n",
|
||
" 2 2 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎡\n",
|
||
" ⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢\n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢\n",
|
||
" ⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎥ ⎢ ──────────── ⎥ ⎢\n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ 2 ⎥ ⎢\n",
|
||
" ⎥, ⎢ ⎥, ⎢\n",
|
||
" 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢\n",
|
||
" ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢-√2⋅⎜- ─ + ─⎟ ⎥ ⎢\n",
|
||
" + ─⎟ ⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢\n",
|
||
" 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢──────────────⎥ ⎢\n",
|
||
"───── - ───────────────── + ──────── + ─────────────────⎥ ⎢ 2 ⎥ ⎣\n",
|
||
" 2 2 2 ⎥ ⎢ ⎥ \n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢-√2⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ ⎝ 2 2⎠ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎦ ⎢──────────────⎥ \n",
|
||
" ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛\n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜\n",
|
||
" ⎢ ────────── ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝\n",
|
||
" ⎢ 2 ⎥ ⎡ 1 ⅈ ⎤ ⎢ ─────────────── - ─\n",
|
||
" ⎢ ⎥ ⎢ ─ - ─ ⎥ ⎢ 2 \n",
|
||
" 1 ⅈ ⎤ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 2 2 ⎥ ⎢ \n",
|
||
" ─ - ─ ⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 2 2 ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ 0 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ──────────── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 0 ⎥ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ \n",
|
||
" ⎥, ⎢ ⎥, ⎢ⅈ⋅⎜- ─ + ─⎟ ⅈ⋅⎜─ - ─⎟⎥, ⎢ \n",
|
||
" 0 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ \n",
|
||
" ⎥ ⎢-√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢─────────── + ─────────⎥ ⎢⎜─ - ─⎟⋅⎜─ + ─⎟ ⎜-\n",
|
||
" 1 ⅈ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ 2 2 ⎥ ⎢⎝2 2⎠ ⎝2 2⎠ ⎝ \n",
|
||
"- ─ + ─⎥ ⎢────────────────⎥ ⎢ ⎥ ⎢─────────────── - ──\n",
|
||
" 2 2⎦ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 2 \n",
|
||
" ⎢ ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎣ ⎝ 2 2⎠ ⎦ ⎢ \n",
|
||
" ⎢-√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ⎢────────────────⎥ ⎣ \n",
|
||
" ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
" 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"- ─ + ─⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ \n",
|
||
" 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"──────────────── + ──────── + ───────────────── ⎥ \n",
|
||
" 2 2 2 ⎥ ⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞⎤ \n",
|
||
" ⎥ ⎢ⅈ⋅⎜─ - ─⎟ ⅈ⋅⎜- ─ + ─⎟⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠⎥ \n",
|
||
" ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢───────── - ───────────⎥ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ 2 2 ⎥ \n",
|
||
" ⎥ ⎢ ⎥ \n",
|
||
" 2 ⎥, ⎢ 0 ⎥, \n",
|
||
" 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎥ \n",
|
||
" ─ + ─⎟⋅⎜─ + ─⎟ ⎜- ─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ 0 ⎥ \n",
|
||
" 2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⎥ \n",
|
||
"─────────────── + ────────── + ─────────────────⎥ ⎢ 1 ⅈ ⎥ \n",
|
||
" 2 2 2 ⎥ ⎢ - ─ + ─ ⎥ \n",
|
||
" ⎥ ⎣ 2 2 ⎦ \n",
|
||
" 2 ⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ \n",
|
||
" ⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎡ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
"⎢ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
"⎢ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎡ 2 \n",
|
||
"⎢ ────────── + ──────────── - ────────────── + ──────────── ⎥ ⎢⎛1 ⅈ⎞ ⎛ \n",
|
||
"⎢ 4 4 4 4 ⎥ ⎢⎜─ - ─⎟ ⎜- \n",
|
||
"⎢ ⎥ ⎢⎝2 2⎠ ⎝ \n",
|
||
"⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢──────── - ───\n",
|
||
"⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ 2 \n",
|
||
"⎢ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
"⎢ ──────────── ⎥ ⎢ ⎛ \n",
|
||
"⎢ 2 ⎥ ⎢ ⎜-\n",
|
||
"⎢ ⎥, ⎢ ⎝ \n",
|
||
"⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ \n",
|
||
"⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ ⎛ \n",
|
||
"⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠⎥ ⎢ ⎜-\n",
|
||
"⎢- ──────────── - ────────── + ──────────── - ──────────────⎥ ⎢ ⎝ \n",
|
||
"⎢ 4 4 4 4 ⎥ ⎢ \n",
|
||
"⎢ ⎥ ⎢ \n",
|
||
"⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"⎢ -√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
"⎢ ⎝ 2 2⎠ ⎥ ⎣ \n",
|
||
"⎢ ──────────────── ⎥ \n",
|
||
"⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛ 1 ⅈ⎞ ⎤ ⎡ \n",
|
||
" ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎛ \n",
|
||
" 2 ⎤ ⎢ ⎝ 2 2⎠ ⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜-\n",
|
||
"1 ⅈ⎞ ⎥ ⎢ ──────────── ⎥ ⎢ ⎝ \n",
|
||
"─ + ─⎟ ⎥ ⎢ 2 ⎥ ⎢ - ─────────────\n",
|
||
"2 2⎠ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ ⎥ ⎢ 4 \n",
|
||
"─────── + ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎡ 1 ⅈ⎤ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" 2 ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢- ─ + ─⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 2⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎥ ⎢ ──────────── ⎥ ⎢ \n",
|
||
" ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
" 2 2⎠ ⎝2 2⎠ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛ \n",
|
||
" 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎥ ⎢ -√2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜- \n",
|
||
" ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ 1 ⅈ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝ \n",
|
||
" 2 2⎠ ⎝2 2⎠ ⎥ ⎢- ─ + ─⎥ ⎢ ────────────── ⎥ ⎢- ──────────────\n",
|
||
" ⎥ ⎣ 2 2⎦ ⎢ 2 ⎥ ⎢ 4 \n",
|
||
" 2 ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" ⎜- ─ + ─⎟ ⎥ ⎢-√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎦ ⎢ ⎝ 2 2⎠ ⎥ ⎢ \n",
|
||
" ⎢────────────────⎥ ⎣ \n",
|
||
" ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
" 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
" ─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ \n",
|
||
" 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"─────── + ────────────────── + ──────── + ───────────────── ⎥ \n",
|
||
" 4 2 2 ⎥ \n",
|
||
" ⎥ ⎡ 0 ⎤ ⎡-1/2⎤ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎥ ⎢ ⎥ \n",
|
||
" ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ √2 ⎥ ⎢1/2 ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ ── ⎥ ⎢ ⎥ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ \n",
|
||
" 2 ⎥, ⎢ ⎥, ⎢ ─ ⎥,\n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢-√2 ⎥ ⎢ 2 ⎥ \n",
|
||
"─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜- ─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢────⎥ ⎢ ⎥ \n",
|
||
"2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 2 ⎥ ⎢ ⅈ ⎥ \n",
|
||
"────── + ────────────────── + ────────── + ─────────────────⎥ ⎢ ⎥ ⎢ ─ ⎥ \n",
|
||
" 4 2 2 ⎥ ⎣ 0 ⎦ ⎣ 2 ⎦ \n",
|
||
" ⎥ \n",
|
||
" 2 ⎥ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ \n",
|
||
" ⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ⎤ \n",
|
||
" ⎢- ── + ────⎥ ⎢- ── + ────⎥ \n",
|
||
" ⎡ 0 ⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎡-√2 ⎤ ⎡-1/2⎤ ⎡-√2 \n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢────⎥ ⎢ ⎥ ⎢────\n",
|
||
" ⎡-1/2⎤ ⎢ √2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎡-1/2⎤ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢ 2 \n",
|
||
" ⎢ ⎥ ⎢ ── ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎢1/2 ⎥ ⎢ 4 4 ⎥ ⎢ 0 ⎥ ⎢-ⅈ ⎥ ⎢ 0 \n",
|
||
" ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢─── ⎥, ⎢ \n",
|
||
" ⎢1/2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢-1/2⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ 0 \n",
|
||
" ⎢ ⎥ ⎢──────⎥ ⎢- ── - ────⎥ ⎢ ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎣1/2 ⎦ ⎢ 2 ⎥ ⎢ 4 4 ⎥ ⎣-1/2⎦ ⎢ 4 4 ⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢√2⋅ⅈ\n",
|
||
" ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢─── ⎥ ⎢────\n",
|
||
" ⎣ 0 ⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 \n",
|
||
" ⎢ ── - ──── ⎥ ⎢ ── + ──── ⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ⎤ ⎡ √2 √2⋅ⅈ⎤ \n",
|
||
" ⎢- ── - ────⎥ ⎢- ── - ────⎥ \n",
|
||
"⎤ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎡-ⅈ ⎤ ⎡0 ⎤ ⎡ 0 ⎤ ⎡1/2⎤ ⎡ ⅈ ⎤ ⎡ \n",
|
||
"⎥ ⎢ ⎥ ⎢ ⎥ ⎢───⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
"⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢√2⎥ ⎡1/2 ⎤ ⎢ √2 ⎥ ⎢1/2⎥ ⎢ 2 ⎥ ⎢ \n",
|
||
"⎥ ⎢ ── - ──── ⎥ ⎢ ── - ──── ⎥ ⎢ ⎥ ⎢──⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢1/2⎥ ⎢2 ⎥ ⎢1/2 ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢1/2⎥ ⎢ \n",
|
||
"⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢───⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ ⅈ ⎥ ⎢√2⎥ ⎢-1/2⎥ ⎢√2⋅ⅈ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢ \n",
|
||
"⎥ ⎢- ── + ────⎥ ⎢- ── - ────⎥ ⎢ ─ ⎥ ⎢──⎥ ⎢ ⎥ ⎢────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎥ ⎢ 4 4 ⎥ ⎢ 4 4 ⎥ ⎢ 2 ⎥ ⎢2 ⎥ ⎣1/2 ⎦ ⎢ 2 ⎥ ⎢ ⅈ ⎥ ⎢ ⅈ ⎥ ⎢-\n",
|
||
"⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ─ ⎥ ⎢ \n",
|
||
"⎦ ⎢ √2 √2⋅ⅈ ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎣1/2⎦ ⎣0 ⎦ ⎣ 0 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣1\n",
|
||
" ⎢ ── + ──── ⎥ ⎢- ── + ────⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ √2 √2⋅ⅈ⎤ ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎤ \n",
|
||
" ⎢- ── + ────⎥ ⎢- ─ + ────────── + ─⎥ \n",
|
||
"ⅈ ⎤ ⎢ 4 4 ⎥ ⎡ 1 ⅈ⎤ ⎡ -√2 ⎤ ⎢ 4 4 4⎥ ⎡1/2\n",
|
||
"─ ⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢ ──── ⎥ ⎢ ⎥ ⎢ \n",
|
||
"2 ⎥ ⎢ √2 √2⋅ⅈ ⎥ ⎢ 2 2⎥ ⎡-1/2⎤ ⎢ 2 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢-ⅈ \n",
|
||
" ⎥ ⎢ ── + ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ + ────────── - ─ ⎥ ⎢───\n",
|
||
"ⅈ ⎥ ⎢ 4 4 ⎥ ⎢ 0 ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ ⎢ 4 4 4 ⎥ ⎢ 2 \n",
|
||
"─ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"2 ⎥ ⎢ √2 √2⋅ⅈ⎥ ⎢ 0 ⎥ ⎢-1/2⎥ ⎢ 0 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢-1/\n",
|
||
" ⎥ ⎢- ── + ────⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ + ────────── - ─ ⎥ ⎢ \n",
|
||
"1/2⎥ ⎢ 4 4 ⎥ ⎢ 1 ⅈ⎥ ⎣1/2 ⎦ ⎢-√2⋅ⅈ ⎥ ⎢ 4 4 4 ⎥ ⎢-ⅈ \n",
|
||
" ⎥ ⎢ ⎥ ⎢- ─ + ─⎥ ⎢──────⎥ ⎢ ⎥ ⎢───\n",
|
||
"/2 ⎦ ⎢ √2 √2⋅ⅈ⎥ ⎣ 2 2⎦ ⎣ 2 ⎦ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎣ 2 \n",
|
||
" ⎢- ── - ────⎥ ⎢- ─ + ────────── + ─⎥ \n",
|
||
" ⎣ 4 4 ⎦ ⎣ 4 4 4⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⅈ ⎤ \n",
|
||
" ⎢ ─ ⎥ \n",
|
||
" ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡1/2⎤ ⎢ 2 ⎥ ⎡ 0 ⎤ ⎡ ⅈ ⎤ ⎡-1/2⎤ ⎡ 0 ⎤ ⎡-1/2\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢-√2⋅ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢-ⅈ ⎥ ⎢-ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢-ⅈ \n",
|
||
" ⎥ ⎢──────⎥ ⎢──────⎥ ⎢───⎥ ⎢───⎥ ⎢──────⎥ ⎢ ⎥ ⎢─── ⎥ ⎢──────⎥ ⎢─── \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
" ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢───⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"2⎥ ⎢ √2⋅ⅈ ⎥ ⎢ √2 ⎥ ⎢-ⅈ ⎥ ⎢-ⅈ ⎥ ⎢ -√2 ⎥ ⎢ 2 ⎥ ⎢1/2 ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ ⅈ \n",
|
||
" ⎥ ⎢ ──── ⎥ ⎢ ── ⎥ ⎢───⎥ ⎢───⎥ ⎢ ──── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢──────⎥ ⎢ ─ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢1/2⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣1/2⎦ ⎢-ⅈ ⎥ ⎣ 0 ⎦ ⎣1/2⎦ ⎣ 2 ⎦ ⎣ 0 ⎦ ⎣1/2 \n",
|
||
" ⎢───⎥ \n",
|
||
" ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅⎜─ +\n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝2 \n",
|
||
" ⎢ ────────── ⎥ ⎢ ───────\n",
|
||
" ⎡-ⅈ ⎤ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
" ⎢───⎥ ⎢ ⎥ ⎢ \n",
|
||
"⎤ ⎢ 2 ⎥ ⎡-ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡1/2⎤ ⎡ √2 ⎤ ⎡1/2 ⎤ ⎡√2⎤ ⎢ ⎛1 \n",
|
||
"⎥ ⎢ ⎥ ⎢─── ⎥ ⎢-√2⋅ⅈ⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ── ⎥ ⎢ ⎥ ⎢──⎥ ⎢ -√2⋅ⅈ⋅⎜─ \n",
|
||
"⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢2 ⎥ ⎢ ⎝2 \n",
|
||
"⎥ ⎢───⎥ ⎢ ⎥ ⎢──────────────⎥ ⎢───⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ⎥ ⎢ ─────────\n",
|
||
"⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢0 ⎥ ⎢ 2 \n",
|
||
"⎥, ⎢ ⎥, ⎢─── ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
"⎥ ⎢ ⅈ ⎥ ⎢ 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢1/2⎥ ⎢ 0 ⎥ ⎢ ⅈ ⎥ ⎢0 ⎥ ⎢ ⎛1 \n",
|
||
"⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ + ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ─ ⎥ ⎢ ⎥ ⎢ √2⋅⎜─ +\n",
|
||
"⎥ ⎢ 2 ⎥ ⎢-1/2⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⅈ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢√2⎥ ⎢ ⎝2 \n",
|
||
"⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ────────── ⎥ ⎢ ─ ⎥ ⎢──────⎥ ⎢ ⎥ ⎢──⎥ ⎢ ───────\n",
|
||
"⎦ ⎢-ⅈ ⎥ ⎣1/2 ⎦ ⎢ 2 ⎥ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣-1/2⎦ ⎣2 ⎦ ⎢ 2 \n",
|
||
" ⎢───⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎣ 2 ⎦ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛ 1\n",
|
||
" ⎢-√2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢-√2⋅ⅈ⋅⎜- ─\n",
|
||
" ⎢ ⎝2 2⎠ ⎥ ⎢ ⎝ 2\n",
|
||
" ⎢──────────────⎥ ⎢──────────\n",
|
||
" ⎣ 2 ⎦ ⎣ 2 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎤ ⎡ ⎛ 1 ⅈ⎞ ⎤ \n",
|
||
" ─⎟ ⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ \n",
|
||
" 2⎠ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎡ √2⋅ⅈ⋅(-1 + \n",
|
||
"─── ⎥ ⎢ ──────────── ⎥ ⎢ ───────────\n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎥ ⎡ √2⋅ⅈ ⎤ ⎡ ⅈ ⎤ ⎢ ⎛1 ⅈ⎞ ⎥ ⎡ -√2 ⎤ ⎡-1/2⎤ ⎢ ⎛1 \n",
|
||
"- ─⎟ ⎥ ⎢ ──── ⎥ ⎢ ─ ⎥ ⎢ -√2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ──── ⎥ ⎢ ⎥ ⎢ -√2⋅ⅈ⋅⎜─ - \n",
|
||
" 2⎠ ⎥ ⎢ 2 ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ 2 ⎥ ⎢-ⅈ ⎥ ⎢ ⎝2 \n",
|
||
"───── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ────────────── ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ───────────\n",
|
||
" ⎥ ⎢ 0 ⎥ ⎢-ⅈ ⎥ ⎢ 2 ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ 2 \n",
|
||
" ⎥, ⎢ ⎥, ⎢─── ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ \n",
|
||
" ⅈ⎞ ⎥ ⎢ 0 ⎥ ⎢ 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 0 ⎥ ⎢-ⅈ ⎥ ⎢ √2⋅ⅈ⋅(-1 + \n",
|
||
" ─⎟ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢─── ⎥ ⎢ ───────────\n",
|
||
" 2⎠ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢-1/2⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢ 2 ⎥ ⎢ 4 \n",
|
||
"─── ⎥ ⎢──────⎥ ⎢ ⎥ ⎢ ──────────── ⎥ ⎢──────⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎣ 2 ⎦ ⎣-1/2⎦ ⎢ 2 ⎥ ⎣ 2 ⎦ ⎣-1/2⎦ ⎢ ⎛ 1 \n",
|
||
" ⎥ ⎢ ⎥ ⎢-√2⋅ⅈ⋅⎜- ─ +\n",
|
||
" ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎝ 2 \n",
|
||
" + ─⎟ ⎥ ⎢-√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢────────────\n",
|
||
" 2⎠ ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎣ 2 \n",
|
||
"──────⎥ ⎢────────────────⎥ \n",
|
||
" ⎦ ⎣ 2 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"ⅈ) ⎤ ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ ⎡ \n",
|
||
"── ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ─ + ────────── - ─ ⎥ ⎢ √2⋅\n",
|
||
" ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ 4 4 4 ⎥ ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ ⎢ \n",
|
||
" ⎥ ⎢ ────────── ⎥ ⎢ ⎥ ⎢ ─ + ────────── - ─ ⎥ ⎢ ───\n",
|
||
"ⅈ⎞ ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢ 4 4 4 ⎥ ⎢ \n",
|
||
"─⎟ ⎥ ⎢ ⎥ ⎢- ─ + ────────── + ─ ⎥ ⎢ ⎥ ⎢ \n",
|
||
"2⎠ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 4 4 4 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢ ⎛\n",
|
||
"─── ⎥ ⎢√2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⎥ ⎢- ─ + ────────── + ─⎥ ⎢√2⋅⎜\n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 4⎥ ⎢ ⎝\n",
|
||
" ⎥, ⎢──────────── ⎥, ⎢ ⅈ⋅⎜─ - ─⎟ ⎥, ⎢ ⎥, ⎢────\n",
|
||
"ⅈ) ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ ⎝2 2⎠ ⎥ ⎢ 1 ⅈ ⅈ⋅(-1 + ⅈ) ⎥ ⎢ \n",
|
||
"── ⎥ ⎢ ⎥ ⎢ - ─ + ─ + ───────── ⎥ ⎢ ─ - ─ - ────────── ⎥ ⎢ \n",
|
||
" ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ)⎥ ⎢ 4 4 2 ⎥ ⎢ 4 4 4 ⎥ ⎢-√2⋅\n",
|
||
" ⎥ ⎢─────────────⎥ ⎢ ⎥ ⎢ ⎥ ⎢────\n",
|
||
" ⅈ⎞ ⎥ ⎢ 4 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 1 ⅈ ⅈ⋅(-1 + ⅈ)⎥ ⎢ \n",
|
||
" ─⎟ ⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢- ─ + ─ - ──────────⎥ ⎢ \n",
|
||
" 2⎠ ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ)⎥ ⎢ 1 ⎝ 2 2⎠ ⅈ⎥ ⎣ 4 4 4 ⎦ ⎢-√2⋅\n",
|
||
"────⎥ ⎢─────────────⎥ ⎢- ─ + ─────────── + ─⎥ ⎢────\n",
|
||
" ⎦ ⎣ 4 ⎦ ⎣ 4 2 4⎦ ⎣ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ \n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ \n",
|
||
"⎛1 ⅈ⎞ ⎤ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ \n",
|
||
"⎜─ - ─⎟ ⎥ ⎢ ───────────── + ────────── + ─────────── + ──────────── ⎥ \n",
|
||
"⎝2 2⎠ ⎥ ⎢ 8 4 8 4 ⎥ ⎡ 1\n",
|
||
"─────── ⎥ ⎢ ⎥ ⎢ ─\n",
|
||
" 2 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ 4\n",
|
||
" ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" 1 ⅈ⎞ ⎥ ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅(-1 + ⅈ)⎥ ⎢ \n",
|
||
"- ─ + ─⎟ ⎥ ⎢────────────── + ───────────── + ──────────── + ───────────⎥ ⎢- \n",
|
||
" 2 2⎠ ⎥ ⎢ 4 8 4 8 ⎥ ⎢ \n",
|
||
"──────── ⎥, ⎢ ⎥, ⎢ \n",
|
||
" 2 ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ ⎥ ⎢- \n",
|
||
"(-1 + ⅈ) ⎥ ⎢ ⎝2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"─────────⎥ ⎢ - ──────────── + ───────────── - ─────────── + ────────── ⎥ ⎢ \n",
|
||
" 4 ⎥ ⎢ 4 8 8 4 ⎥ ⎢ 1\n",
|
||
" ⎥ ⎢ ⎥ ⎢ ─\n",
|
||
"(-1 + ⅈ) ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎣ 4\n",
|
||
"─────────⎥ ⎢ √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ \n",
|
||
" 4 ⎦ ⎢√2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝ 2 2⎠ ⎝ 2 2⎠⎥ \n",
|
||
" ⎢───────────── - ─────────── + ──────────── - ──────────────⎥ \n",
|
||
" ⎣ 8 8 4 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─\n",
|
||
" ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎝2 2\n",
|
||
" ⎢ ───────────── + ────────── + ─────────── + ───────────\n",
|
||
" ⅈ⋅(-1 + ⅈ) ⅈ ⎤ ⎢ 8 4 8 4 \n",
|
||
" + ────────── - ─ ⎥ ⎢ \n",
|
||
" 4 4 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ \n",
|
||
"1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅(-1 +\n",
|
||
"─ + ────────── + ─⎥ ⎢────────────── + ───────────── + ──────────── + ────────\n",
|
||
"4 4 4⎥ ⎢ 4 8 4 8 \n",
|
||
" ⎥, ⎢ \n",
|
||
"1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 \n",
|
||
"─ + ────────── + ─⎥ ⎢ √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - \n",
|
||
"4 4 4⎥ ⎢ √2⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 \n",
|
||
" ⎥ ⎢ - ─────────── + ────────── - ───────────── + ──────────\n",
|
||
" ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢ 8 4 8 4 \n",
|
||
" + ────────── - ─ ⎥ ⎢ \n",
|
||
" 4 4 ⎦ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ \n",
|
||
" ⎢ ⎝ 2 2⎠ √2⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 +\n",
|
||
" ⎢────────────── - ─────────── + ──────────── - ──────────\n",
|
||
" ⎣ 4 8 4 8 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
"⎞ ⎤ ⎡ ⎛1 \n",
|
||
"⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜─ -\n",
|
||
"⎠ ⎥ ⎡√2⋅ⅈ⋅(-1 + ⅈ)⎤ ⎡ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎤ ⎡√2⋅ⅈ⋅(-1 + ⅈ) ⎤ ⎢ ⎝2 \n",
|
||
"─ ⎥ ⎢─────────────⎥ ⎢ ─ + ────────── - ─ ⎥ ⎢───────────── ⎥ ⎢ - ─────────\n",
|
||
" ⎥ ⎢ 4 ⎥ ⎢ 4 4 4 ⎥ ⎢ 4 ⎥ ⎢ 4 \n",
|
||
" ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ)⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) ⎥ ⎢ \n",
|
||
" ⎥ ⎢─────────────⎥ ⎢- ─ + ────────── + ─⎥ ⎢───────────── ⎥ ⎢ \n",
|
||
" ⅈ)⎥ ⎢ 4 ⎥ ⎢ 4 4 4⎥ ⎢ 4 ⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ\n",
|
||
"───⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢────────────\n",
|
||
" ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ 8 \n",
|
||
" ⎥, ⎢ √2⋅⎜─ - ─⎟ ⎥, ⎢ ⅈ⋅⎜─ - ─⎟ ⎥, ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥, ⎢ \n",
|
||
"ⅈ⎞ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ 1 ⎝2 2⎠ ⅈ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
"─⎟ ⎥ ⎢ ────────── ⎥ ⎢ ─ - ───────── - ─ ⎥ ⎢ ──────────── ⎥ ⎢ \n",
|
||
"2⎠ ⎥ ⎢ 2 ⎥ ⎢ 4 2 4 ⎥ ⎢ 2 ⎥ ⎢ √2⋅ⅈ⋅(-1 +\n",
|
||
"── ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ──────────\n",
|
||
" ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ 8 \n",
|
||
" ⎥ ⎢√2⋅⎜- ─ + ─⎟ ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢1 ⅈ ⎝ 2 2⎠ ⎥ ⎢ ⎝ 2 2⎠⎥ ⎢ ⎛ 1 \n",
|
||
" ⎥ ⎢──────────── ⎥ ⎢─ - ─ - ─────────── ⎥ ⎢──────────────⎥ ⎢√2⋅ⅈ⋅⎜- ─ + \n",
|
||
" ⅈ)⎥ ⎣ 2 ⎦ ⎣4 4 2 ⎦ ⎣ 2 ⎦ ⎢ ⎝ 2 \n",
|
||
"───⎥ ⎢────────────\n",
|
||
" ⎦ ⎣ 4 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ ⎛1 ⅈ⎞ \n",
|
||
" ─⎟ √2⋅⎜─ - ─⎟ ⎥ ⎢ √2⋅ⅈ⋅⎜─ - ─⎟ \n",
|
||
" 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ √2⋅ⅈ⋅(-1 \n",
|
||
"─── + ───────────── - ─────────── + ────────── ⎥ ⎢ - ──────────── + ─────────\n",
|
||
" 8 8 4 ⎥ ⎢ 4 8 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ \n",
|
||
" √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ \n",
|
||
") √2⋅(-1 + ⅈ) ⎝ 2 2⎠ ⎝ 2 2⎠⎥ ⎢√2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + ⅈ)\n",
|
||
"─ - ─────────── + ──────────── - ──────────────⎥ ⎢───────────── - ───────────\n",
|
||
" 8 4 4 ⎥ ⎢ 8 8 \n",
|
||
" ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) √2⋅(-1 + \n",
|
||
"─── + ────────── + ─────────── + ──────────── ⎥ ⎢ ───────────── - ─────────\n",
|
||
" 4 8 4 ⎥ ⎢ 8 8 \n",
|
||
" ⎥ ⎢ \n",
|
||
"ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ ⎛ 1 ⅈ⎞ \n",
|
||
"─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢√2⋅ⅈ⋅⎜- ─ + ─⎟ \n",
|
||
"2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅(-1 + ⅈ)⎥ ⎢ ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 +\n",
|
||
"── + ───────────── + ──────────── + ───────────⎥ ⎢────────────── + ──────────\n",
|
||
" 8 4 8 ⎦ ⎣ 4 8 \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎡ \n",
|
||
" ⎛1 ⅈ⎞ ⎤ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" √2⋅⎜─ - ─⎟ ⎥ ⎢ ⎜─ - ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ \n",
|
||
"+ ⅈ) √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
"──── - ─────────── + ────────── ⎥ ⎢ ─────────────── - ────────────────── \n",
|
||
" 8 4 ⎥ ⎢ 2 4 \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ\n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" + ──────────── - ──────────────⎥ ⎢───────────────── - ────────────────── + ─\n",
|
||
" 4 4 ⎥ ⎢ 2 4 \n",
|
||
" ⎥, ⎢ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
"ⅈ) ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟⋅⎜─ + ─⎟ \n",
|
||
"── - ────────── + ──────────── ⎥ ⎢ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ \n",
|
||
" 4 4 ⎥ ⎢ ────────────────── + ─────────────── \n",
|
||
" ⎥ ⎢ 4 2 \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
" √2⋅⎜- ─ + ─⎟ ⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛\n",
|
||
" ⅈ) ⎝ 2 2⎠ √2⋅(-1 + ⅈ)⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜\n",
|
||
"─── - ──────────── - ───────────⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝\n",
|
||
" 4 8 ⎦ ⎢───────────────── + ────────────────── + ─\n",
|
||
" ⎣ 2 4 \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
" ⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎡ ⎛1 ⅈ⎞ ⎤ \n",
|
||
"+ ──────── + ────────────────── ⎥ ⎢ √2⋅⎜─ - ─⎟ ⎥ \n",
|
||
" 2 4 ⎥ ⎢ ⎝2 2⎠ ⎥ ⎡ 1 ⅈ ⅈ⋅(-1 + ⅈ\n",
|
||
" ⎥ ⎢ ────────── ⎥ ⎢ ─ - ─ - ─────────\n",
|
||
" ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 2 ⎥ ⎢ 4 4 4 \n",
|
||
"⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 1 ⅈ ⅈ⋅(-1 + \n",
|
||
"───────────────── + ─────────────────⎥ ⎢ √2⋅⎜- ─ + ─⎟ ⎥ ⎢- ─ + ─ - ────────\n",
|
||
" 4 2 ⎥ ⎢ ⎝ 2 2⎠ ⎥ ⎢ 4 4 4 \n",
|
||
" ⎥, ⎢ ──────────── ⎥, ⎢ \n",
|
||
" 2 ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ ⎥ ⎢ ─ + ────────── - \n",
|
||
" ⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ ⎢-√2⋅ⅈ⋅(-1 + ⅈ) ⎥ ⎢ 4 4 \n",
|
||
" ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎢───────────────⎥ ⎢ \n",
|
||
"+ ──────── - ────────────────── ⎥ ⎢ 4 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) \n",
|
||
" 2 4 ⎥ ⎢ ⎥ ⎢- ─ + ────────── +\n",
|
||
" ⎥ ⎢-√2⋅ⅈ⋅(-1 + ⅈ) ⎥ ⎣ 4 4 \n",
|
||
" 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢───────────────⎥ \n",
|
||
"- ─ + ─⎟⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟⎥ ⎣ 4 ⎦ \n",
|
||
" 2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ \n",
|
||
"──────────────── - ──────────────────⎥ \n",
|
||
" 2 4 ⎦ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎡ \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ\n",
|
||
" ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─\n",
|
||
" ⎡ ⎛1 ⅈ⎞ ⎤ ⎡ 1 ⅈ ⅈ⋅(-1 + ⅈ) ⎤ ⎢ ⎝2 2⎠ ⎝2 2\n",
|
||
" ⎢ √2⋅⎜─ - ─⎟ ⎥ ⎢ ─ - ─ - ────────── ⎥ ⎢ ────────────────── + ──────\n",
|
||
") ⎤ ⎢ ⎝2 2⎠ ⎥ ⎢ 4 4 4 ⎥ ⎢ 4 \n",
|
||
"─ ⎥ ⎢ ────────── ⎥ ⎢ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ ⅈ⋅(-1 + ⅈ)⎥ ⎢⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛\n",
|
||
" ⎥ ⎢ ⎥ ⎢- ─ + ─ - ──────────⎥ ⎢⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜\n",
|
||
"ⅈ)⎥ ⎢ ⎛ 1 ⅈ⎞⎥ ⎢ 4 4 4 ⎥ ⎢⎝ 2 2⎠ ⎝2 2⎠ ⎝\n",
|
||
"──⎥ ⎢√2⋅⎜- ─ + ─⎟⎥ ⎢ ⎥ ⎢───────────────── + ────────────\n",
|
||
" ⎥ ⎢ ⎝ 2 2⎠⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ 2 4 \n",
|
||
" ⎥, ⎢────────────⎥, ⎢ ⅈ⋅⎜─ - ─⎟ ⎥, ⎢ \n",
|
||
"ⅈ ⎥ ⎢ 2 ⎥ ⎢ 1 ⅈ ⎝2 2⎠ ⎥ ⎢⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ \n",
|
||
"─ ⎥ ⎢ ⎥ ⎢ ─ - ─ + ───────── ⎥ ⎢⎜─ - ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- \n",
|
||
"4 ⎥ ⎢√2⋅(-1 + ⅈ) ⎥ ⎢ 4 4 2 ⎥ ⎢⎝2 2⎠ ⎝2 2⎠ ⎝ \n",
|
||
" ⎥ ⎢─────────── ⎥ ⎢ ⎥ ⎢─────────────── + ──────────────\n",
|
||
" ⅈ⎥ ⎢ 4 ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 2 4 \n",
|
||
" ─⎥ ⎢ ⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" 4⎦ ⎢√2⋅(-1 + ⅈ) ⎥ ⎢1 ⎝ 2 2⎠ ⅈ ⎥ ⎢ \n",
|
||
" ⎢─────────── ⎥ ⎢─ + ─────────── - ─ ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎣ 4 ⎦ ⎣4 2 4 ⎦ ⎢ ⎜- ─ + ─⎟⋅⎜─ + ─⎟ ⅈ⋅(-1 + ⅈ)\n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝2 2⎠ \n",
|
||
" ⎢ ───────────────── + ──────────\n",
|
||
" ⎣ 2 4\n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
"⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎡ \n",
|
||
"⎟⋅⎜─ + ─⎟ ⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ ⎢ \n",
|
||
"⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎥ ⎡ ⎛1 ⅈ⎞ ⎤ ⎢ \n",
|
||
"───────── + ──────── - ────────────────── ⎥ ⎢ ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" 2 2 4 ⎥ ⎢ 1 ⅈ ⎝2 2⎠ ⎥ ⎢ \n",
|
||
" ⎥ ⎢ - ─ + ─ + ───────── ⎥ ⎢ \n",
|
||
"1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 4 4 2 ⎥ ⎢ \n",
|
||
"─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢√2\n",
|
||
"2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"────── + ───────────────── - ──────────────────⎥ ⎢ ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢──\n",
|
||
" 2 4 ⎥ ⎢ 1 ⎝ 2 2⎠ ⅈ⎥ ⎢ \n",
|
||
" ⎥, ⎢- ─ + ─────────── + ─⎥, ⎢ \n",
|
||
"1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 4 2 4⎥ ⎢ \n",
|
||
"─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟⎥ ⎢ ⎥ ⎢ \n",
|
||
"2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎝2 2⎠⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢ \n",
|
||
"────── + ───────────────── - ──────────────────⎥ ⎢ ─ + ────────── - ─ ⎥ ⎢ -\n",
|
||
" 2 4 ⎥ ⎢ 4 4 4 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ ⎥ ⎢ \n",
|
||
" 2 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ) ⅈ ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢- ─ + ────────── + ─ ⎥ ⎢ \n",
|
||
"⋅⎜- ─ + ─⎟ ⎜- ─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ + ─⎟ ⎥ ⎣ 4 4 4 ⎦ ⎢√2\n",
|
||
" ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢──\n",
|
||
"────────── + ────────── - ────────────────── ⎥ ⎣ \n",
|
||
" 2 4 ⎦ \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎤ ⎡ \n",
|
||
" √2⋅⎜─ - ─⎟ √2⋅ⅈ⋅⎜─ - ─⎟ ⎥ ⎢ ⎛ \n",
|
||
"√2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎝2 2⎠ ⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜- \n",
|
||
"───────────── + ────────── + ─────────── + ──────────── ⎥ ⎢ ⎝ \n",
|
||
" 8 4 8 4 ⎥ ⎢ - ──────────────\n",
|
||
" ⎥ ⎢ 4 \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎥ ⎢ \n",
|
||
"⋅ⅈ⋅⎜- ─ + ─⎟ √2⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅(-1 + ⅈ)⎥ ⎢ ⎛ 1\n",
|
||
"──────────── + ───────────── + ──────────── + ───────────⎥ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜- ─\n",
|
||
" 4 8 4 8 ⎥ ⎢ ⎝ 2\n",
|
||
" ⎥, ⎢- ───────────────\n",
|
||
" ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 \n",
|
||
" √2⋅ⅈ⋅⎜─ - ─⎟ √2⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" ⎝2 2⎠ √2⋅ⅈ⋅(-1 + ⅈ) ⎝2 2⎠ √2⋅(-1 + ⅈ) ⎥ ⎢ \n",
|
||
" ──────────── + ───────────── - ────────── + ─────────── ⎥ ⎢ \n",
|
||
" 4 8 4 8 ⎥ ⎢ \n",
|
||
" ⎥ ⎢ \n",
|
||
" ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞⎥ ⎢ \n",
|
||
" √2⋅⎜- ─ + ─⎟ √2⋅ⅈ⋅⎜- ─ + ─⎟⎥ ⎢ \n",
|
||
"⋅ⅈ⋅(-1 + ⅈ) ⎝ 2 2⎠ √2⋅(-1 + ⅈ) ⎝ 2 2⎠⎥ ⎢ \n",
|
||
"─────────── - ──────────── + ─────────── - ──────────────⎥ ⎣ \n",
|
||
" 8 4 8 4 ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" \n",
|
||
" 2 ⎤ \n",
|
||
"1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ \n",
|
||
"─ + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ \n",
|
||
"2 2⎠ ⎝2 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠ ⎥ \n",
|
||
"────── + ────────────────── + ──────── + ───────────────── ⎥ ⎡ 1 ⅈ⋅(-1 + ⅈ\n",
|
||
" 4 2 2 ⎥ ⎢- ─ + ─────────\n",
|
||
" ⎥ ⎢ 4 4 \n",
|
||
" 2 ⎥ ⎢ \n",
|
||
" ⅈ⎞ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ)\n",
|
||
" + ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜- ─ + ─⎟ ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥ ⎢ ─ + ──────────\n",
|
||
" 2⎠ ⎝2 2⎠ ⎝ 2 2⎠ ⎝ 2 2⎠ ⎝2 2⎠⎥ ⎢ 4 4 \n",
|
||
"───── + ────────────────── + ────────── + ─────────────────⎥, ⎢ \n",
|
||
" 4 2 2 ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ)\n",
|
||
" ⎥ ⎢ ─ + ──────────\n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 \n",
|
||
" ⎜- ─ + ─⎟⋅⎜─ - ─⎟ ⎥ ⎢ \n",
|
||
" ⎝ 2 2⎠ ⎝2 2⎠ ⎥ ⎢ 1 ⅈ⋅(-1 + ⅈ\n",
|
||
" ⎥ ⎢- ─ + ─────────\n",
|
||
" 2 ⎥ ⎣ 4 4 \n",
|
||
" ⎛ 1 ⅈ⎞ ⎥ \n",
|
||
" ⎜- ─ + ─⎟ ⎥ \n",
|
||
" ⎝ 2 2⎠ ⎦ \n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
"\n",
|
||
" \n",
|
||
" ⎡ 2 \n",
|
||
" ⎢ ⎛1 ⅈ⎞ ⎛1 ⅈ⎞ \n",
|
||
" ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⎜─ - ─⎟ \n",
|
||
" ⎡ √2⋅ⅈ⋅(-1 + ⅈ) ⎤ ⎢ ⎝2 2⎠ ⎝2 2⎠ (\n",
|
||
" ⎢ ───────────── ⎥ ⎢ ────────────────── + ──────── + ─\n",
|
||
") ⅈ⎤ ⎢ 4 ⎥ ⎢ 2 2 \n",
|
||
"─ + ─⎥ ⎢ ⎥ ⎢ \n",
|
||
" 4⎥ ⎢ √2⋅ⅈ⋅(-1 + ⅈ) ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎥ ⎢ ───────────── ⎥ ⎢ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ \n",
|
||
" ⅈ ⎥ ⎢ 4 ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ (-1 +\n",
|
||
" - ─ ⎥ ⎢ ⎥ ⎢────────────────── + ──────────────────── + ─────\n",
|
||
" 4 ⎥ ⎢ ⎛1 ⅈ⎞ ⎥ ⎢ 4 4 8\n",
|
||
" ⎥, ⎢ -√2⋅ⅈ⋅⎜─ - ─⎟ ⎥, ⎢ \n",
|
||
" ⅈ ⎥ ⎢ ⎝2 2⎠ ⎥ ⎢ ⎛1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" - ─ ⎥ ⎢ ────────────── ⎥ ⎢ⅈ⋅(-1 + ⅈ)⋅⎜─ - ─⎟ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ \n",
|
||
" 4 ⎥ ⎢ 2 ⎥ ⎢ ⎝2 2⎠ ⎝ 2 2⎠ (-1 +\n",
|
||
" ⎥ ⎢ ⎥ ⎢────────────────── + ──────────────────── + ─────\n",
|
||
") ⅈ⎥ ⎢ ⎛ 1 ⅈ⎞ ⎥ ⎢ 4 4 8\n",
|
||
"─ + ─⎥ ⎢-√2⋅ⅈ⋅⎜- ─ + ─⎟ ⎥ ⎢ \n",
|
||
" 4⎦ ⎢ ⎝ 2 2⎠ ⎥ ⎢ 2 \n",
|
||
" ⎢────────────────⎥ ⎢ ⎛ 1 ⅈ⎞ ⎛ 1 ⅈ⎞ \n",
|
||
" ⎣ 2 ⎦ ⎢ ⅈ⋅(-1 + ⅈ)⋅⎜- ─ + ─⎟ ⎜- ─ + ─⎟ \n",
|
||
" ⎢ ⎝ 2 2⎠ ⎝ 2 2⎠ \n",
|
||
" ⎢ ──────────────────── + ────────── +\n",
|
||
" ⎣ 2 2 \n",
|
||
" \n",
|
||
"\n",
|
||
" ⎤\n",
|
||
" ⎤⎥\n",
|
||
" ⎥⎥\n",
|
||
" 2 ⎥⎥\n",
|
||
"-1 + ⅈ) ⎥⎥\n",
|
||
"──────── ⎥⎥\n",
|
||
" 8 ⎥⎥\n",
|
||
" ⎥⎥\n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥⎥\n",
|
||
" 2 ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥⎥\n",
|
||
" ⅈ) ⎝ 2 2⎠ ⎝2 2⎠⎥⎥\n",
|
||
"──── + ─────────────────⎥⎥\n",
|
||
" 2 ⎥⎥\n",
|
||
" ⎥⎥\n",
|
||
" ⎛ 1 ⅈ⎞ ⎛1 ⅈ⎞⎥⎥\n",
|
||
" 2 ⎜- ─ + ─⎟⋅⎜─ - ─⎟⎥⎥\n",
|
||
" ⅈ) ⎝ 2 2⎠ ⎝2 2⎠⎥⎥\n",
|
||
"──── + ─────────────────⎥⎥\n",
|
||
" 2 ⎥⎥\n",
|
||
" ⎥⎥\n",
|
||
" ⎥⎥\n",
|
||
" ⎥⎥\n",
|
||
" 2 ⎥⎥\n",
|
||
" (-1 + ⅈ) ⎥⎥\n",
|
||
" ───────── ⎥⎥\n",
|
||
" 8 ⎦⎥\n",
|
||
" ⎦"
|
||
]
|
||
},
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"starting_states"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"True"
|
||
]
|
||
},
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"M([1, 0, 0, 0]) in starting_states"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"resulting_states = [CZ * s for s in starting_states]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def get_starting_state_index(s):\n",
|
||
" for i, test in enumerate(starting_states):\n",
|
||
" if test == s:\n",
|
||
" return True\n",
|
||
" if(simplify(test - s) == M([[0, 0], [0, 0]])):\n",
|
||
" return i\n",
|
||
" print(s)\n",
|
||
" raise NotImplementedError()\n",
|
||
" "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Matrix([[1/2], [I*(1/2 + I/2)/2 + I*(1/2 - I/2)/2], [1/2], [-I*(1/2 - I/2)/2 - I*(1/2 + I/2)/2]])\n"
|
||
]
|
||
},
|
||
{
|
||
"ename": "NotImplementedError",
|
||
"evalue": "",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)",
|
||
"\u001b[0;32m<ipython-input-23-d37d36fc7f78>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mget_starting_state_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mresulting_states\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||
"\u001b[0;32m<ipython-input-23-d37d36fc7f78>\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mget_starting_state_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mresulting_states\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||
"\u001b[0;32m<ipython-input-22-267976ed7e52>\u001b[0m in \u001b[0;36mget_starting_state_index\u001b[0;34m(s)\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mNotImplementedError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;31mNotImplementedError\u001b[0m: "
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"results = [get_starting_state_index(s) for s in resulting_states]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 31,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"i = sympy.I"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 32,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMwAAAB1CAYAAAAC5w5PAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAR9UlEQVR4Ae2dXa7UOBbHuS2eRwxI8963pVnAhV4B9A6gkeYd2AGIFaBmB8B7PzS9A4YV9MACRoIFjNSAZgFz5//LtUsul5O4quwkTp0juZL44/j4fMTHH3GdXV5eXjNogwNnZ2cXktfHkFrF3dDzTcV/DuPtvg4HzoT2QuFDD/rfJYgHPWkWfQAHpOC/uGJ/6vqDwi+5yq6yX5UfA/FGwz1wWzi+Xd3a7zEcEI8/qfx5Cod4fHY9SHipezKHYG+tkBtH3ksYvJheiPG/g0rPKPwHXX/KNJovyk/gJYdswAM+MxYxohD4F1qI7ic93CciNJhXmUILEdl9JgdkFI+V9YY3Foqh6IpH6V8pIJQx+Kgy1uOPcemIdPH3dVxcMiKqM5jv4kR7rsYBFN27UmElf+jhnoTi3aswze4XxgEzmOkEck9V4U7F4N0p0g0WzoHQJVs4qe2Sl9l73MxpoXB1rp3Ly6QBrnSq58pBZ3n25IAZzJ4MOzC7Nwbfm4RofK+T45KR5zfGPiCQ8TCb80lXJg3+SZxBXQ6YS1aXv/tgvzWWWUaBYWyMTvfMlGEoTBoYTMABM5gJmKwqfC+Sqs33PqzLHAIYzbnrbQ4pb2X24IAZzB7MOjRr0Cuk3C4fN7jmJYN4p9C3wAxpHs+hZFq5DA6YwWQwqVAWXKfzBC7fw4yNQe6obMoouvIyShv4J5hbOsoMpjRH+/G9VRJKH8NtRbAg+S1OiJ5fKw+zYjEwHT1mbHEZez6QA2YwBzJu32JSdlaQv8it6laMKa97eoyfFR7xDBCncKkQu1+vFLc1uNfz06tS12z13zGi9sWmlWtzeBs/vclzKbp3zX7U893QnaKnUTrjmX+FRRX/WfG/KHijwRVjMuF7yoR57b4eB8xg6vF2B7NT7Gc7CVGE8qVcL/aeYUhPouz2OCEHzCWbkNlWVfscMINpX4bWggk5YAYzIbOtqvY5YAbTvgytBRNywAxmQmZbVe1zwAymfRlaCybkwGwGE6xFTNjc8lWtoR3Whny9mMVgJCBWqC/yyVx0TnYK+xX3RROaIm5FsphEDpMbjATE1pBbWoTrTk5JCXFpcaI53qayIVHt6PZxuXZt4lu4WZMsppJDeC7ZD24luZqsJSD2Tr1XPWwRWRU4o2KbSxPbVNYqixpyEE4+C+dT8LMqPQzCUDhPWARnPvm9UInkZUWpDfcVnhIyKKNdqTOtMorWyyLaT00WVeVQay/Zc6kAXxByOGAIP8tKk3uhJFivbJTDZRvcc6X8GCS43rkKeP6scqW3urN/a/TMMNX7WjR9VXim+yX1MicliynkwOCbA5bPVRkb/KoE4ee7jQ8p/IrHWJ76NJf3nX9OXV0ejk6Fdk7s5MjVQdqVh251ME+crjIYJGcaj5ZTPsY6j3PyzplHNM4ui0PaL7qzZFFaDshUQSRfXqvikgl5Cvhmo+/tD0GbNBHGPYfbpdy6EDdjhjMFxl+DPZIrNIYvxO2/V+FF8lG0oGRjAN2jvdEYkgnSlyCLvZop/jP+zZVFNTkUNRiUSgGfn68LY+Brw/jsZpQSJYYZsRvD8+jUs6uTsQY4ioIMBRowFsYwW9+n9FTUe5B1T/5q0Y4vpyqLanIoajCSPm9XvixMKTAKnTo9xSt6nMYzH0kNAf45YwzeKG+kJJuvGYcK7ZMmo3mg8NIZz1hRaPbtGctbO/2UZVFNDsUG/VJWeooXCrguDL55O4eA8sdxYXp8T/5e5RN+jITQgeqnbsYQ3cnRV7GT/2K88GFWMFl0L9EqcihmMFJglAUXi5krpvZywRtRbFAYS4czhUj13Fed4eKnr/8exqR0aIiZdkfxflbNo32r/FsntivP4L9MKX+fUcZt8HVMehV9nhdLkcWFGOBnQYd48cTT7jMdKItqcihmMDRQjUPJ6WEe6D7+tyyEuNNjwCDlxWh20hT3UaEP3qocfyTk88AkoFMWxaMsW6D8zLyNDsqVp88gtvAlHmgD7sDsoLZCy1JkgYxG+Z5i2oGyqCaH71JEHhGHgPyRQQ8jPChS/Mb3WXjDU7YDCdvj8W9KFt/iNxTjCm8slGP8wj+mdWU6REf8qD6/aMnBExjnhr4BtBhtkfoH6shN8jz8pgKnJotqcriey/3MfIwpHkq5mFWK3TKUm1NSdkBK/kxlUEyMgoVLDoG4G2TE0B4rPfzTpxdB/u5cYuFhurQUvBG+v4JM9fDGYs1nrOdhy0/s8ilqFjhlWVSVw4XEOdXC5Scp4egCYK08aufgYmhYr/JuFnJ1D4++humpe+XppjNTaUuKE530PrPKYh9+iNa9ZFFaDsK3tXCJq/Srwv8UqoEY1M1o6W2N8s0F2e6S6A3z0vMN9l5qV+duRuUOaqdwsZ6FkKrAQmSR3baIp4OyKCmHgMB/6x4bucYYBn/vH+5el6pAY3cG41VrDJCL8XvXLQHgWrI/bDOFHaAMb9lpQPtKAC4goSbMKotDGpYpi5Jy8GT+XTfYSGcwPrL6VUrH4L6Zv2aQgFAqjIXV/l5jUBq9C24D7WsC1iiLKeRADzM14NrEEwJT0zBan5jPIiiTF+xAZow3tIuA9gy6bEpfIqxNFtXlMLnB6M3GNOcTKWE1H72EZopO1njY2OlD8vhW1w4W3GhXU+BoXoUsppJD6WnlLIWRoBhQN+O+DDVKbWm6HWuRxVRyKGYwzm0Z0q2TS5MQB9dtxDNcCKZ4Y2Aixm8zitNYGB50/0wWMcu6j1kGZbFbIh1TzGDGlCNd/WnHimfJWTspPOMlJhHiL1azGGayyGLTQZkmH8McRKUVMg4shAPFepg526M3MmsWzx0NTPECj/SmbW4gfkV6u79rl8UqDEbqxff8G/dGQmNswLRwcmarXXVsgvJVy2ItLhkbM8PBM4uMLJDOuQ2nCe2uQOSqZYHB/MUxzV8r8LA6SnqXnG/uqxNiFXRbn9Ymi795ueKS/dc9+KtPa+YqdyxeC8GA+EyaTwpaBMZeTY6/VigL9Oc/XonWMobx7WHtAjeMadlmj6OV0o1t9Ny0d8k3a5BFzN+1jGG6dklAzJAxfmFbS5Nv6FhArT6vVRar6WG8gGQo3bfj7u32Tc/hdy2t6l9TdK9ZFqvoYZyAmErms+ULZyyMY/g4zmBCDqxdFmvpYVhzuaHAdQPqXTZrM5tIu6nNgVXLYhUGI8PoDquorQmGf5wDa5fFKlyycTFaDuNAGQ6YwZTho2E5EQ6YwTQkaDeZsUWx4vr+YWwrnz2U4cAqxjBlWDENFim4P0zjT9XI5lA2K+ZOfb/HQFTG72DgHmh2kfaK/HZ+zWAmlJWUnRmkFzKQ7hB1p/wfdP0p02iYJiewmwEjAw/4bJFWjJgCMBgYb2sWlbkto+DQjxveWKgORVc8Ss8aUs5h3aOfJ4PXoDgH2KrULVEwhjlXQGA3FQzqcYDv8L0rFdbyhx446dK7V2Ga3S+DA/dEBjYy7UF+y2j7bFTAdNypGLw7RbrBwjmAS2ZQmQOZvUdWD+9dO0cykwb8o0Gq56rcqtNEbwYzjdy9MfjeJKzV9zo5Lhl5fvODfBkP7vQnXZk0WMUnASFjlnhv6zDLkcqtMVJkFBjGxuh0z4QNhtL512PlLf14DpjBHM/DHAy+F0nl9b0P6zKHAEbTzAHvhzRwSWXMYCaQRtArpNwuH4fi94LcrncKrOP0gcfTl27xBThgBlOAiZkocJ3OE3l9DzM2Brmjsimj6MrLKG3gn2Bu6SgzmNIc7cf3VkkofQxsa/F/pBunhc+vZRSpc9aYjh4zthCP3R/BATOYI5i3T1EpOyfbfJFbxQEdHeieHuNnhUdXMVd/QKv4y4T79UpxW4N7PfP/NcDg4eRXWey3BAdsWrkEF/Nx0Js8l6J71+xHPd8N3Snds12G8czW2V6K/6x4/mnaGw2uGJMJ31NGV4MJOGAGMwGTfRVOsfkPxkFQvpTrxd4zDMk+ux7kXt1Ec8nq8tewr4wDZjArE6g1py4HzGDq8tewr4wDZjArE6g1py4HzGDq8tewr4wDZjArE6g1py4HFmswwVpFXQ5Uxr6GdqyhDYi5RDsWaTBqGCvYF5V1eSr07CT2K/JT1VmsHpPFNisXZzASEFtHbmmRrjtZZZvcZT6J5t5dxGpHt8/LtWuZDeihymSxy5gzRfEmR+A/uJXk3VyFYyQI9lDdjOtz8e8Vv7pzttQ2eMw2mEVtYzFZjCu3eMSJP3wKfjbX1pjnIuBPhZcRuRxy5/dKbSWJ6PAAPHqgwS0myn8uBGwjeecQ8czf+BXb2as66A3By7aVuC1Eh0C7aMPStraYLEIpZdzTw1wqnEvoCH62IBq+pupXPIr21Kfpni3t7/xz6uryfNWVtn1S4ITJom0TTgyGwNtnFLfyQQ9nk43mnTsPtKZoUPwkslA9WTz1NCp/NVkINz2MqkKVrlyy2Q1GdGAEHzwDwqviUbSLKG6QZodvq0xYvtS96qEHy6pH+XDLHpequxYe0Ti7LETD4Asx1XbKKBSXhXBuDGbSQb9cGA6se6rAx1Qx8E3HjrukvLg8jHli35/n0Zk0V+d9XcFRFBxOeuaP1JOBnPblnHCZgeq4LI4vJos92TipwThl4UOqlALfUTyuUwxe0eODJHi+GWeOnvHP2RKPor6RktBtFwMZCkaLsTBtvPX9Sk8ltK8b8/SkTxmN4Zos9uT49T3zH5xdSoWivFDgTczgG2ULAcOIjSJMj+8xFm9McRoOJ0ay6bFUP3XjEjEzWAxUzz5fO9K+XpqLETWCyGTRMeggWUxmMFKs7lQUCYtZotRMGAYQGxEt83FxOorX4SRTDKrnvuoM13J8/fcwJqVfqIyfeYuLh89PPO0+UmWvRn8+Iroqf59RQsPsPYxvz4JkgT7EfLkj+vwMp+fwW9FOr7iBOWSB4gwOoEVkkVkd1YOSUxfXrcGZnhnYo8w7dbm0OP8gzSpD+qaM7hHIYJlU3SXjVD+9a3L2qWQ9ObhEx6JlIfr2HvTntNvn2UcWyjvPoN8R6U9IeajnEHj7IsQU8FZB2TrQW4V78Pheg3/hinuLl0r/6IpwYfzyuy8TxB90q/oYhzFo5jv7twob+gYQ0r593M4BVEcneR5+EyaTRSY7r2fmK5WNMcVDFE3X2C1DkeJuuatXSv7MKSZGwYIn37zf7RKvfij3WHmYu++MSM8vKKMr+btjWJW2z3hDxQbhjfB1/96sejAEesg+V8wjwq309Pm4ua4miwNkManBSMF4m/UpLb3Bj33ao7K9K/tKo+zWX4+7unrL9NWzR3y4fQeDpW1jQJnYLx8rUyXdZNH9zeHesviuijQOQ9otOh1WdPpSUriwp6An63sRhMThBoUTEWHaku6XIIuQv4O8mVIWizEYNbqbApZ7wyREM4AbKGKfefr7CFc+eiEmNLIVoQ9X7XjfljllIRr23nM3hSwWYzBOCXhT782o2grUh18Cgl6MhcVL7ocA93Asz1D5qdNMFgmOL8pgpHjMhjXx1w0yEBZBmbz4qnumq3t3ESid3oUtNFtrCIpbLJgs0qJZlME4EhkLxDNoaepnjJVC3VY4C0LytEpHIu3JGePM2KJk1SaLiC2LMxgpILNNT/RWZrGoeXDtYLdAzizaotprstgVxyxfXO6SYTHGgeVywL308r+4VIEbas57Ba658EBvKNZHOhAO/HyDgAPiz+BCZwm+B9Vtbk0WG1ZsbsZk4TNmLVy6rjlcqPPls6+5BGUjPIGMJfieYpPJIsWVvLjFjWHyyLZcxoF5OJDVw8xDWtlanXvz3GFlmhd45N7iV0/2W50DrcvhZAxGmsAhGJtFUQmOqV7WUoamg6sr0AlW0LQcTsklYzcze7k8sJLNImlTW3E88Q1fm5bDKRkMvUvOd/cN62ITpDcth5NxyeSOxdtSEBxnC2ymvptQt8aJbF0OocF8knsSi4MvFFvc0hG3Y+vZuWHs/TpqqnwLqT3szYElykE0DZ7sg8Gw3XwzGI5avfit6BG9o49iCDNkjF/YC9bcdpXRBjaSYcFyGNxRzubBRlh8PJleSL7X1DMD/m96Xt2L4Xhu1cPQshxOZtDvhMRUMt/6XzhjoWf9Uk81DHPMgdblcDI9jATVHQQeC1C9y87ALc5jz+U40Loc/g/s8QijPkDg0wAAAABJRU5ErkJggg==\n",
|
||
"text/latex": [
|
||
"$\\displaystyle \\left[\\begin{matrix}0.5\\\\\\frac{i \\left(0.5 + \\frac{i}{2}\\right)}{2} + \\frac{i \\left(0.5 - \\frac{i}{2}\\right)}{2}\\\\0.5\\\\- \\frac{i \\left(0.5 - \\frac{i}{2}\\right)}{2} - \\frac{i \\left(0.5 + \\frac{i}{2}\\right)}{2}\\end{matrix}\\right]$"
|
||
],
|
||
"text/plain": [
|
||
"⎡ 0.5 ⎤\n",
|
||
"⎢ ⎥\n",
|
||
"⎢ ⎛ ⅈ⎞ ⎛ ⅈ⎞ ⎥\n",
|
||
"⎢ ⅈ⋅⎜0.5 + ─⎟ ⅈ⋅⎜0.5 - ─⎟ ⎥\n",
|
||
"⎢ ⎝ 2⎠ ⎝ 2⎠ ⎥\n",
|
||
"⎢ ─────────── + ─────────── ⎥\n",
|
||
"⎢ 2 2 ⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎢ 0.5 ⎥\n",
|
||
"⎢ ⎥\n",
|
||
"⎢ ⎛ ⅈ⎞ ⎛ ⅈ⎞⎥\n",
|
||
"⎢ ⅈ⋅⎜0.5 - ─⎟ ⅈ⋅⎜0.5 + ─⎟⎥\n",
|
||
"⎢ ⎝ 2⎠ ⎝ 2⎠⎥\n",
|
||
"⎢- ─────────── - ───────────⎥\n",
|
||
"⎣ 2 2 ⎦"
|
||
]
|
||
},
|
||
"execution_count": 32,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"s = M([[1/2], [i*(1/2 + i/2)/2 + i*(1/2 - i/2)/2], [1/2], [-i*(1/2 - i/2)/2 - i*(1/2 + i/2)/2]])\n",
|
||
"s"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 33,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"False"
|
||
]
|
||
},
|
||
"execution_count": 33,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"s in starting_states"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 34,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"True"
|
||
]
|
||
},
|
||
"execution_count": 34,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"s in resulting_states"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 38,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Matrix([[0.500000000000000], [I*(0.5 + I/2)/2 + I*(0.5 - I/2)/2], [0.500000000000000], [-I*(0.5 - I/2)/2 - I*(0.5 + I/2)/2]])\n",
|
||
"Matrix([[0.5*exp(I*pi/4)], [(I*(0.5 + I/2)/2 + I*(0.5 - I/2)/2)*exp(I*pi/4)], [0.5*exp(I*pi/4)], [(-I*(0.5 - I/2)/2 - I*(0.5 + I/2)/2)*exp(I*pi/4)]])\n",
|
||
"Matrix([[0.5*I], [I*(I*(0.5 + I/2)/2 + I*(0.5 - I/2)/2)], [0.5*I], [I*(-I*(0.5 - I/2)/2 - I*(0.5 + I/2)/2)]])\n",
|
||
"Matrix([[0.5*exp(3*I*pi/4)], [(I*(0.5 + I/2)/2 + I*(0.5 - I/2)/2)*exp(3*I*pi/4)], [0.5*exp(3*I*pi/4)], [(-I*(0.5 - I/2)/2 - I*(0.5 + I/2)/2)*exp(3*I*pi/4)]])\n",
|
||
"Matrix([[-0.500000000000000], [-I*(0.5 - I/2)/2 - I*(0.5 + I/2)/2], [-0.500000000000000], [I*(0.5 + I/2)/2 + I*(0.5 - I/2)/2]])\n",
|
||
"Matrix([[0.5*exp(5*I*pi/4)], [(I*(0.5 + I/2)/2 + I*(0.5 - I/2)/2)*exp(5*I*pi/4)], [0.5*exp(5*I*pi/4)], [(-I*(0.5 - I/2)/2 - I*(0.5 + I/2)/2)*exp(5*I*pi/4)]])\n",
|
||
"Matrix([[-0.5*I], [-I*(I*(0.5 + I/2)/2 + I*(0.5 - I/2)/2)], [-0.5*I], [-I*(-I*(0.5 - I/2)/2 - I*(0.5 + I/2)/2)]])\n",
|
||
"Matrix([[0.5*exp(7*I*pi/4)], [(I*(0.5 + I/2)/2 + I*(0.5 - I/2)/2)*exp(7*I*pi/4)], [0.5*exp(7*I*pi/4)], [(-I*(0.5 - I/2)/2 - I*(0.5 + I/2)/2)*exp(7*I*pi/4)]])\n",
|
||
"Matrix([[0.500000000000000], [I*(0.5 + I/2)/2 + I*(0.5 - I/2)/2], [0.500000000000000], [-I*(0.5 - I/2)/2 - I*(0.5 + I/2)/2]])\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"s_phases = [sympy.exp(i * sympy.pi * n / 4) * s for n in range(9)]\n",
|
||
"\n",
|
||
"for sp in s_phases:\n",
|
||
" try:\n",
|
||
" print(\"found\", get_starting_state_index(sp))\n",
|
||
" break\n",
|
||
" except:\n",
|
||
" pass\n",
|
||
" "
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.7.3"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|