bachelor_thesis/performance/scaling_qbits.py

69 lines
2.5 KiB
Python

from collections import deque
import matplotlib.pyplot as plt
import numpy as np
from pyqcs import State, H, X, S, CZ
from pyqcs.graph.state import GraphState
from pyqcs.util.random_circuits import random_circuit
from measure_circuit import execution_statistics
def S_with_extra_arg(act, i):
return S(act)
def test_scaling_qbits(state_factory
, nstart
, nstop
, ngates_per_qbit
, ncircuits
, **kwargs):
results = deque()
for qbits in range(nstart, nstop):
circuits = [random_circuit(qbits, ngates_per_qbit * qbits, X, H, S_with_extra_arg, CZ)
for _ in range(ncircuits)]
state = state_factory(qbits)
print("running test with", qbits, "qbits")
N, avg, std_dev = execution_statistics(circuits, state, scale=qbits, **kwargs)
results.append([qbits, N, avg, std_dev])
return np.array(results, dtype=np.double)
if __name__ == "__main__":
nstart = 4
nstop = 19
ncircuits = 250
ngates_per_qbit = 100
np.random.seed(0xdeadbeef)
results_naive = test_scaling_qbits(State.new_zero_state
, nstart
, nstop
, ngates_per_qbit
, ncircuits
, repeat=10)
np.random.seed(0xdeadbeef)
results_graph = test_scaling_qbits(GraphState.new_zero_state
, nstart
, nstop
, ngates_per_qbit
, ncircuits
, repeat=10)
h0 = plt.errorbar(results_naive[:, 0], results_naive[:, 2], results_naive[:, 3]
, label=f"Dense Vector Simulator $N_c={int(results_naive[:, 1][0])}$ circuits"
, marker="o"
, color="black")
h1 = plt.errorbar(results_graph[:, 0], results_graph[:, 2], results_graph[:, 3]
, label=f"Graphical Simulator $N_c={int(results_graph[:, 1][0])}$ circuits"
, marker="^"
, color="black")
plt.legend(handles=[h0, h1])
plt.xlabel("Number of Qbits $N_q$")
plt.ylabel("Execution time per circuit [s]")
plt.title(f"Execution Time for ${ngates_per_qbit}\\times N_q$ Gates with random Circuits (rescaled)")
#plt.show()
plt.savefig("Figure_1.png", dpi=400)