\section{The Graph Simulator} \subsection{Introduction to the Graph Formalism} The first step towards the simulation in the graph formalism has been the discovery of the stabilizer states and stabilizer circuits \cite{gottesman2009}\cite{gottesman1997}. They led to the faster simulation using stabilizer tableaux\cite{gottesman_aaronson2008} and later to the graph formalism\cite{schlingenmann2001}\cite{andersbriegel2005}\cite{vandennest_ea2004}. The following discussion eludicates the graph formalism and explains how the graph simulator works. Some parts will be kept short as they can be looked up in \cite{andersbriegel2005}. \begin{definition} \begin{equation} p \in P_n \Rightarrow p = \bigotimes\limits_{i=0}^n p_i \\ \forall i: p_i \in P := \{\pm 1, \pm i\} \cdot \{I, X, Y, Z\} \end{equation} Where $X = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right)$, $Y = \left(\begin{array}{cc} 0 & i \\ -i & 0\end{array}\right)$ and $Z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right)$ are the Pauli matrices and $I$ is the identity. \end{definition} \begin{definition} Let $p_i \in P_n \forall i = 1, ..., n$, $[p_i, p_j] = 0 \forall i,j$ be commuting multi-local Pauli operators. Then a $n$ qbit state $\ket{\psi}$ is called a stabilizer state iff \begin{equation} \forall i: p_i\ket{\psi} = +1\ket{\psi} \end{equation} \end{definition} %A $n$ qbit graph or stabilizer state is a $+1$ eigenstate of some $ p \in P_n$ where $P_n$ is the Pauli group\cite{andersbriegel2005}. \begin{definition} \begin{equation} C_n := \{U \in SU(2) | UpU^\dagger \in P_n \forall p \in P_n\} \end{equation} is called the Clifford group on $n$ qbits. $C_1$ is called the local Clifford group. \end{definition} One can show that the Clifford group $C_n$ can be generated using the elements of $C_1$ acting on all qbits and the controlled phase gate $CZ$ between all qbits\cite{andersbriegel2005}. It is worth noting that the $CX$ gate can be generated using $CZ$ and $C_1$ gates. \begin{lemma} Let $a \in C_1$ then $\forall \phi \in [0, 2\pi)$ also $\exp(i\phi)a \in C_1$. \textbf{Note}: This is also true for $C_n \forall n >= 1$. \end{lemma} \begin{proof} Let $a' := \exp(i\phi)a$. $a' \in C_1$ iff $a'pa^{\prime\dagger} \in P \forall p \in P$. \begin{equation} \begin{aligned} a'pa^{\prime\dagger} &= (\exp(i\phi)a)p(\exp(i\phi)a)^\dagger \\ & = \exp(i\phi)ap\exp(-i\phi)a^\dagger \\ & = \exp(i\phi)\exp(-i\phi) apa^\dagger \\ & = apa^\dagger \in P \end{aligned} \end{equation} \end{proof} \begin{lemma} One cannot measure phases by projecting states. \end{lemma} \begin{proof} Let $\ket{\psi}$ be a state, $\ket{\varphi}\bra{\varphi}$ a projector. $\ket{\psi'} := \exp(i\phi)\ket{\psi}$ for some $\phi \in [0, 2\pi)$. \begin{equation} \begin{aligned} \bra{\psi'}\ket{\varphi}\bra{\varphi}\ket{\psi'} &= \exp(-i\phi)\bra{\psi}\ket{\varphi}\bra{\varphi}\exp(i\phi)\ket{\psi} \\ & = \exp(-i\phi)\exp(i\phi)\bra{\psi}\ket{\varphi}\bra{\varphi}\ket{\psi} \\ & = \bra{\psi}\ket{\varphi}\bra{\varphi}\ket{\psi} \end{aligned} \end{equation} \end{proof} \begin{definition} A phase $\phi \in [0, 2\pi)$ is called qbit-global, if for some qbit states $\ket{\psi}, \ket{\varphi}$ $\ket{\psi} = \exp(i\phi)\ket{\varphi}$. \end{definition} \begin{lemma} When entangling qbits via projections one can disregard qbit-global phases. Two qbits are entangled via projection, if for some single qbit gates $M,N$ and two orthonormal states $\ket{a}, \ket{b}$ \begin{equation} C^{M,N}(i,j) = \ket{a}\bra{a}_j \otimes M_i + \ket{b}\bra{b}_j \otimes N_i \end{equation} \textbf{Remark.} In particular when entangling states using $CX$ and $CZ$ one can disregard qbit-global phases. This is immideatly clear when recalling \eqref{eq:CX_pr} and \eqref{eq:CZ_pr}. \end{lemma} \begin{proof} Let $\alpha, \beta \in [0, 2\pi)$ be some phases, $\ket{\psi}, \ket{\varphi}, \ket{\psi'} := \exp(i\alpha)\ket{\psi}, \ket{\varphi'} := \exp(i\beta)\ket{\varphi}$ some single qbit states, $M, N, \ket{a}, \ket{b}, C^{M,N}(i,j)$ as defined above. \begin{equation} \begin{aligned} C^{M,N}(1, 0) (\ket{\psi'}\otimes\ket{\varphi'}) & = \ket{a}\braket{a}{\varphi'}\otimes M\ket{\psi'} + \ket{b}\braket{b}{\varphi'} \otimes N\ket{\psi'} \\ & = \exp(i\beta)\ket{a}\braket{a}{\varphi}\otimes\exp(i\alpha)M\ket{\phi} + \exp(i\beta)\ket{b}\braket{b}{\varphi}\otimes\exp(i\alpha)N\ket{\phi}\\ & = \exp(i(\beta + \alpha))(\ket{a}\braket{a}{\varphi}\otimes M\ket{\psi} + \ket{b}\braket{b}{\varphi} \otimes N\ket{\psi})\\ & = \exp(i(\beta + \alpha))C^{M,N}(1, 0) (\ket{\psi}\otimes\ket{\varphi}) \end{aligned} \end{equation} Where $\exp(i(\beta + \alpha))$ is a multi-qbit-global phase which can be (following the above argumentation) disregarded. \end{proof} \begin{corrolary} One can disregard global phases of elements of the $C_1$ group. \end{corrolary} \begin{proof} As it has been shown above a quantum computer cannot measure global phases. Also the entanglement gates $CX, CZ$ map qbit-global phases to multi-qbit-global phases which cannot be measured. It has been shown above that one can choose the $C_1$ operators such that they do not yield a phase. \end{proof} \begin{definition} \begin{equation} C_L := \{a \in C_1 | \nexists \phi \in [0, 2\pi), b \in C_L : a = \exp(i\phi)b\} \end{equation} Is called the non-trivial local Clifford group. \end{definition} \textbf{Remark.} When computing the elements of $C_L$ and their products one will realize that $C_L$ is not a group. If one however disregards a global phase the product of two $C_L$ elements will be in $C_L$ again. Because the global phases can be disregarded as discussed above $C_L$ will be used from now on instead of $C_1$. \begin{theorem} \begin{equation} | C_L | = 24 \end{equation} \end{theorem} \begin{proof} It is clear that $\forall a \in C_L$ a is a group isomorphism $P \circlearrowleft$: $apa^\dagger a p' a^\dagger = a pp'a^\dagger$. Therefore $a$ will preserve the (anti-)commutator relations of $P$. Also $P$ is generated by $X,Z$ when disregarding a phase wich does not matter for anticommutator relations. This means that $X$ can be mapped to any $p \in P$ which are six elements disregarding \end{proof} \subsection{Graph Storage} One of the gread advantages of simulating in the graph formalism is a great increase in simulation performance and a lower memory requirement. The simulation of at least $10^6$ qbits on a common desktop computer should be possible\cite{andersbriegel2005}. Therefore one has to take care when choosing a representation of the graph state. The following FIXME \subsection{Usage} FIXME \subsection{Performance} FIXME