\section{The Stabilizer Formalism and VOP-Free Graph States} \subsection{Stabilizers and Stabilizer States} This chapter discusses the stabilizer formalism that was introduced by Gottesman\cite{gottesman1997} for quantum error correction but soon proved to be a useful tool to describe a subset of states: the stabilizer states which can be simulated in polynomial time \cite{gottesman2008}. \begin{definition} \begin{equation} p \in P_n \Rightarrow p = \bigotimes\limits_{i=0}^n p_i \\ \forall i: p_i \in P := \{\pm 1, \pm i\} \cdot \{I, X, Y, Z\} \end{equation} Where $X = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right)$, $Y = \left(\begin{array}{cc} 0 & i \\ -i & 0\end{array}\right)$ and $Z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right)$ are the Pauli matrices and $I$ is the identity. $p \in = P_n$ is called a multi-local Pauli operator. \end{definition} \begin{definition} For a group $G$, $g_1, ..., g_n$ are called the generators of $G$ iff $\forall g \in G: g = \prod\limits_{i \in I} g_i$ for a subsed $I$ of $\{1, ..., n\}$. We write $G = \langle g_i \rangle_i$ if G is generated by the $g_i$. The generators $g_i$ are chosen to be the smallest set of generators of $G$. \end{definition} \begin{definition} \label{def:stabilizer} For a $n$ qbit state $\ket{\psi}$ $\langle S_i \rangle_i$ is called the stabilizer of $\ket{\psi}$ if \begin{enumerate} \item{$\forall i = 1, ..., n$ $S_i \in P_n$} \item{$\forall i,j = 1, ..., n$ $[S_i, S_j] = 0$ $S_i$ and $S_j$ commute} \item{$\forall i = 1, ..., n$ $S_i\ket{\psi} = +1 \ket{\psi}$} \end{enumerate} \end{definition} \begin{lemma} For every $\langle S_i \rangle_i$ fulfilling the first two conditions in definition \ref{def:stabilizer} there exists a (up to a global phase) unique state $\ket{\psi}$ fulfilling the third condition. \end{lemma} \begin{proof} All multi-local Pauli operators are hermitian (observables in terms of quantum mechanics), as they commute they have a common set of eigenstates. Because each $S_i$ has eigenvalues $+1, -1$, there exist $2^n$ eigenstates, one state $\ket{\psi}$ with eigenvalue $+1$ for all $S_i$. As the dimension of $n$ qbits is $2^n$ the state $\ket{psi}$ is unique up to a global phase. \end{proof} \subsection{The Vertex Operator-Free Graph States} In order to understand some essential transformations of graph states it is necessary to study the vertex operator-free graph states first, partially because the graph states as used in this paper were derived from the vertex operator-free graph states. \begin{definition} \label{def:vop_free_g_state} A $n$ qbit vertex operator-free graph state $\ket{\overline{G}}$ is associated with a graph $(V, E)$ by the $n$ operators \begin{equation} K^{(i)}_G := X_i \left(\prod\limits_{\{i, j\} \in E} Z_j\right) \end{equation} for all $i \in V$ where for some operator $O$ $O_i$ indicates that it acts on the $i$-th qbit. A state $\ket{\overline{G}}$ is a $+1$ eigenstate of all $n$ $K^{(i)}_G$. \end{definition} \begin{corrolary} All $K^{(i)}_G$ commute and are hermitian. Therefore they have a common set of eigenstates (in particular definition \ref{def:vop_free_g_state} is well defined). In terms of quantum mechanics $K^{(i)}_G$ are observables. Further as $\ket{\overline{G}}$ is a $+1$ eigenstate of all $n$ $K^{(i)}_G$ which are multi-local Pauli operators, $\{K^{(i)}_G | i \in \{0, ..., n-1\}\}$ is the stabilizer of $\ket{\overline{G}}$ and $\ket{\overline{G}}$ is a stabilizer state. \end{corrolary} \begin{proof} As $X_i$ and $Z_i$ are hermitian their product is hermitian. Consider the case $\{i,j\} \notin E$ first: \begin{equation} \begin{aligned} \left[K^{(i)}_G, K^{(j)}_G\right] = \left[X_i \prod\limits_{\{i, n\} \in E} Z_n, X_j \prod\limits_{\{j, m\} \in E} Z_m\right] = 0 \end{aligned} \end{equation} As operators acting on different qbits commute. The case $\{i,j\} \in E$ is slightly less trivial: \begin{equation} \begin{aligned} \left[K^{(i)}_G, K^{(j)}_G\right] &= \left[X_i \left(\prod\limits_{\{i, n\} \in E, n \neq j} Z_n\right) Z_j, X_j \left(\prod\limits_{\{j, m\} \in E, m \neq i} Z_m\right) Z_i\right] \\ &= \left[X_i Z_j \prod\limits_n Z_n, X_j Z_i \prod\limits_m Z_m\right]\\ &= \left(X_i Z_j X_j Z_i - X_j Z_i X_i Z_j\right) \prod\limits_n Z_n \prod\limits_m Z_m \\ &= \left(Z_j X_j X_i Z_i - X_j Z_j Z_i X_i\right) \prod\limits_n Z_n \prod\limits_m Z_m \\ &= \left((-1)^2X_j Z_j Z_i X_i - X_j Z_j Z_i X_i\right) \prod\limits_n Z_n \prod\limits_m Z_m \\ &= 0 \end{aligned} \end{equation} as $X$, $Z$ anticommute. \end{proof} \begin{lemma} \begin{equation} \ket{\overline{G}} = \left(\prod\limits_{\{i,j\} \in E} CZ_{i,j} \right) \left(\prod\limits_{l \in V} H_l\right) \ket{0} \end{equation} In particular definitions \ref{def:vop_free_g_state} and \ref{def:graph_state} are consistent, when there are no vertex operators on the graph state $\ket{G}$. \end{lemma} \begin{proof} Let $\ket{+} := \left(\prod\limits_{l \in V} H_l\right) \ket{0}$ as before. Note that for any $X_i$ $X_i \ket{+} = +1 \ket{+}$. Set $\ket{\tilde{G}} := \left(\prod\limits_{\{i,j\} \in E} CZ_{i,j} \right)\ket{+}$. \begin{equation} \begin{aligned} K_G^{(i)} \ket{\tilde{G}} & = X_i \left(\prod\limits_{\{i,j\} \in E} Z_j\right)\left(\prod\limits_{\{l,j\} \in E} CZ_{l,j} \right) \ket{+} \\ & = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)X_i\prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + \ket{1}\bra{1}_j \otimes Z_l\right) \ket{+} \\ & = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)\prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + (-1)^{\delta_{i,l}}\ket{1}\bra{1}_j \otimes Z_l\right) X_i \ket{+} \\ & = \prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + (-1)^{2\delta_{i,l}}\ket{1}\bra{1}_j \otimes Z_l\right) \ket{+} \\ & = \prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + \ket{1}\bra{1}_j \otimes Z_l\right) \ket{+} \\ & = +1 \ket{\tilde{G}} \end{aligned} \end{equation} as $X, Z$ anticommute and $Z\ket{1} = -1\ket{1}$. \end{proof} These insights can be used to understand how measurement works on the vop-free graph state \cite{nielsen_chuang_2010}: Consider a state $\ket{\psi}$ that is stabilized by $g_1, ... g_n$ and a hermitian $g$ that is to be measured.