% vim: ft=tex \section{Introduction to Binary Quantum Computing} \subsection{Single Qbits} \label{ref:singleqbitsystems} A qbit is a two-level quantum mechanical system $ \{\ket{\uparrow} \equiv \ket{1}, \ket{\downarrow} \equiv \ket{0}\} $ with $\braket{\uparrow}{\downarrow} = 0$. One can associate $\ket{\uparrow} \equiv \left(\begin{array}{c} 0 \\ 1\end{array} \right)$ and $\ket{\downarrow} \equiv \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ which is helpful in the following discussion. A gate operating on a qbit is a unitary operator $G \in U(2)$. One can show that $\forall G \in U(2)$ $G$ can be arbitrarily good as a product of unitary generator matrices\cite[Chapter 4.3]{kaye_ea2007}, common choices for the generators are $ X, H, R_{\phi}$ and $Z, H, R_{\phi}$ with \label{ref:singleqbitgates} \begin{equation} X := \left(\begin{array}{cc} 0 & 1 \\ 1 & 0\end{array}\right) \end{equation} \begin{equation} Z := \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right) \end{equation} \begin{equation} H := \frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1\end{array}\right) \end{equation} \begin{equation} R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right) \end{equation} \subsection{$N$ Qbit Systems} \label{ref:nqbitsystems} \begin{postulate} A $N$ qbit quantum mechanical state is the tensor product\cite[Definition 14.3]{wuest1995} of the $N$ single qbit states. The $N$ qbit operators are the tensor product of the $N$ single qbit operators. \end{postulate} Let $\ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ and $\ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$ be the basis of the one-qbit systems. Then two-qbit basis states are \begin{equation} \ket{0} := \ket{0b00} := \ket{0}_s \otimes \ket{0}_s := \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right) \end{equation} \begin{equation} \ket{1} := \ket{0b01} := \ket{0}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right) \end{equation} \begin{equation} \ket{2} := \ket{0b10} := \ket{1}_s \otimes \ket{0}_s := \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} \right) \end{equation} \begin{equation} \ket{3} := \ket{0b11} := \ket{1}_s \otimes \ket{1}_s := \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right) \end{equation} The $N$ qbit basis states can then be constructed in a similar manner. A general $N$ qbit state can then be written as a superposition of the basis states: \begin{equation} \ket{\psi} = \sum\limits_{i = 0}^{2^N - 1} c_i \ket{i} \end{equation} \begin{equation} \sum\limits_{i = 0}^{2^N - 1} |c_i|^2 = 1 \end{equation} FIXME: rewrite this. One can show that the gates in \ref{ref:singleqbitgates} together with an entanglement gate, such as $CX$ or $CZ$ are enough to generate an arbitrary $N$ qbit gate\cite[Chapter 4.3]{kaye_ea2007}. The matrix representation of $CX$ and $CZ$ for two qbits is given by \begin{equation} CX(1, 0) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{array}\right) \end{equation} \begin{equation} CZ(1, 0) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -1 \end{array}\right) \end{equation} Where $1$ is the act-qbit and $0$ the control-qbit. In words $CX$ ($CZ$) apply an $X$ ($Z$) gate on the act-qbit, if the control-qbit is set. The following notation\cite{dahlberg_ea2019} can be more handy when discussing more qbits: \begin{equation}\label{eq:CX_pr} CX(i, j) = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes X_i \end{equation} \begin{equation}\label{eq:CZ_pr} CZ(i, j) = \ket{0}\bra{0}_j\otimes I_i + \ket{1}\bra{1}_j \otimes Z_i \end{equation} Where $i$ is the act-qbit, $j$ the control-qbit and $I_i$, $Z_i$ are the identity and Pauli $Z$ gate operating on qbit i. \subsection{Measurement} \begin{postulate} Let $\ket{\psi} = \alpha\ket{\phi_1} \otimes \ket{1}_n + \beta\ket{\phi_0} \otimes \ket{0}_n$ be a state where $\ket{1}_n, \ket{0}_n$ denote the $n$-th qbit state and $|\alpha|^2 + |\beta|^2 = 1$. Then the measurement of the $n$-th qbit will yield $\ket{\phi_1} \otimes \ket{1}_n$ with probability $|\alpha|^2$ and $\ket{\phi_0} \otimes \ket{0}_n$ with probability $|\beta|^2$. This is called collapse of the wave function. \end{postulate} Measuring a qbit will also yield a classical result $0$ or $1$ with the respective probabilities. \begin{corrolary} In general the measurement of a qbit is not invertible, in particular it cannot be represented as a unitary operator. \end{corrolary} \begin{proof} The measuerment in not injective: Measuring both $\ket{0}$ and $\frac{1}{\sqrt{2}}(\ket{0} + \ket{1}$ (can) map to $\ket{0}$. Any unitary matrix $U$ has the inverse $U^\dagger \equiv U^{-1}$. \end{proof}