\documentclass[10pt]{beamer} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage{amssymb, amsthm} \usepackage{setspace} \usepackage{amsmath} \usepackage{hyperref} \usepackage{geometry} \usepackage{enumerate} \usepackage{physics} \usepackage{listings} %\usepackage{struktex} \usepackage{qcircuit} \usepackage{adjustbox} \usepackage{tikz} \usetheme{metropolis} \setbeamercolor{background canvas}{bg=white!20} \title{An Efficient Quantum Computing Simulator using a Graphical Description for Many-Qbit Systems} \subtitle{Simulation in the Stabilizer Formalism} \author{Daniel Knüttel} \date{21.02.2020} \institute{Universität Regensburg} \titlegraphic{\small\center Universität Regensburg\\ Faculty of the Institute of Theoretical Physics \vspace{-11mm}\flushright\includegraphics[height=1.0cm]{logo.png}} %\logo{\includegraphics[width=1cm]{logo.png}\hfill} %\newcommand{\nologo}{\setbeamertemplate{logo}{}} % command to set the logo to nothing %\newcommand{\congress}{Faculty of the Institute of Theoretical Physics} %% footer \makeatletter \setbeamertemplate{footline} { %\leavevmode% \hbox{% \begin{beamercolorbox}[wd=.9\paperwidth,ht=2.25ex,dp=1ex,left]{Faculty of the Institute of Theoretical Physics}% \end{beamercolorbox}% \begin{beamercolorbox}[wd=.1\paperwidth,ht=2.25ex,dp=1ex,right]{Faculty of the Institute of Theoretical Physics}% \insertframenumber{} / \inserttotalframenumber\hspace*{2ex} \end{beamercolorbox}}% } \makeatother \begin{document} \maketitle \section{Introduction} { \begin{frame}{Motivation} \begin{itemize} \item Some (physical) problems are classically hard to solve. \pause \item The quantum simulator: Mapping a hard problem to quantum hardware that can simulate this specific problem. \pause \item The (universal) quantum computer: able to simulate any unitary transformation on the system. \end{itemize} \end{frame} } { \begin{frame}{Quantum Errors and Quantum Error Correction} \begin{itemize} \item Quantum systems at non-zero temperature often have dephasing effects and a finite population lifetime (relaxation). \pause \item Fault tolerant QC needs a way to correct for those errors. \pause \item Several strategies exist; one important class of quantum error correction codes are \textbf{stabilizer codes}. \end{itemize} \end{frame} } \section{Binary Quantum Computing} { \begin{frame}{Qbits} \textbf{Definition} {\itshape A qbit is a two-level quantum mechanical system $\ket{0}, \ket{1}$ with $\braket{0}{1} = 0$. In the following $Z = \sigma_Z, X = \sigma_X, Y = \sigma_Y$ will be used. $I$ is the identity matrix. } Where $Z\ket{0} = +1\ket{0}$ and $Z\ket{1} = -1\ket{1}$. \end{frame} } { \begin{frame}{Qbits and Gates} \begin{itemize} \item{ \textbf{Postulate} {\itshape A $n$-qbit system is the tensor product of the single-qbit systems. } } \pause %\item{ % For $n$ qbits define the integer state $\ket{j}$ as % \begin{equation} % \ket{j} := \ket{\mbox{0b}i_0i_1...i_{n-1}} := \ket{i_0}_s \otimes \ket{i_1}_s \otimes ... \otimes \ket{i_{n-1}}_s % \end{equation} %} \item{ A transformation $U \in SU(2^n)$ is called \textit{gate} acting on the system. For $\bar{U} \in SU(2)$ the gate $U_i$ acting on qbit $i$ is given by \begin{equation} U_i := \left(\bigotimes\limits_{k < i} I\right) \otimes \bar{U} \otimes \left(\bigotimes\limits_{k > i} I\right) \end{equation} } \pause \item{ For $\bar{U} \in SU(2)$ and qbits $i \neq j$ \begin{equation} CU_{i,j} := \ket{1}\bra{1}_j \otimes U_i + \ket{0}\bra{0}_j \otimes I \end{equation} is the controlled $\ket{U}$ gate acting on $i$ with control-qbit $j$. } \pause \end{itemize} \end{frame} } { \begin{frame}{Gates} Some notable gates are \begin{itemize} \item{ the Hadamard gate \begin{equation} H := \frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1\end{array}\right) \end{equation} which transforms from the $Z$ to the $X$ basis} \pause \item{the rotation gate \begin{equation} R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right) \end{equation} that performs a rotation around the $Z$ axis.} \pause \end{itemize} \end{frame} } { \begin{frame}{Gates} \begin{itemize} \item{The $Z$ and $S$ gates are given by: \begin{equation} Z := \left(\begin{array}{cc} 1 & 0 \\ 0 & -1\end{array}\right) = R_{\pi} \end{equation} \begin{equation} S := \left(\begin{array}{cc} 1 & 0 \\ 0 & i\end{array}\right) = R_{\frac{\pi}{2}} \end{equation} The $S$ gate transforms from $X$ to $Y$ basis. } \pause \item{ \textbf{Theorem} {\itshape Any gate $U \in SU(2^n)$ can be approximated arbitrarely good using the $H$, $R_\phi$ and $CZ_{i,j}$ gate. } } \end{itemize} \end{frame} } { \begin{frame}{Integer States} \begin{itemize} \item{ The eigenstates of the $Z_i$ are called integer states. They have the form \begin{equation} \ket{j} = \ket{\mbox{0b}l_1...l_n} = \ket{l_1}_s \otimes ... \otimes \ket{l_n}s \end{equation} } \pause \item{ For $n$ qbits there exist $2^n$ such states and they form a basis \begin{equation} \ket{\psi} = \sum\limits_{i=0}^{n-1} \ket{i}\braket{i}{\psi} = \sum\limits_{i=0}^{n-1} c_i\ket{i} \end{equation} with the condition $\sum\limits_{i=0}^{n-1} c_i^2 = 1$. } \end{itemize} \end{frame} } { \begin{frame}{Measurement} \begin{itemize} \item{Measurements are performed in $Z$ basis, i.e. for a qbit $i$ $Z_i$ is measured. } \item{ The results of the measurements are associated with a classical result $s \in \{0, 1\}$ using \begin{equation} Z_i\ket{\psi'} = (-1)^s \ket{\psi'} \end{equation} after the measurement. } \end{itemize} \end{frame} } { \begin{frame}{Quantum Circuits} \begin{itemize} \item{ Writing a unitary transformation as a product of the generator gates is unreadable. To fix this problem quantum circuits have been introduced. } \pause \item{ Qbits are represented by horizontal lines. } \pause \item{ Gates acting on a qbit are boxes on the lines. } \pause \item{ Control-qbits are connected to the gate via a vertical line. } \pause \item{ Circuits are read left to right. } \pause \item{ Example: \Qcircuit @C=1em @R=.7em { & \gate{H} & \ctrl{1} & \qw &\qw \\ & \gate{H} & \gate{Z} & \gate{H} &\qw \\ } } \end{itemize} \end{frame} } { \begin{frame}{Case Study: Spin Chain in a Magnetic Field} \begin{itemize} \item{ For a set of $n$ spins in a magnetic field one can rescale the Hamiltonian of the system to \begin{equation} H = -\sum\limits_{i=1}^{n-1} Z_i Z_{i-1} + g\sum\limits_{i=0}^{n-1} X_i \end{equation} } \pause \item{ The time evolution of such a system is given by the transfer matrix \begin{equation} T := \exp(-itH) \in SU(2^n) \end{equation} } \pause \item{ By associating every qbit with one spin (both are two-level systems) one should be able to simulate the behaviour of the spin chain using a quantum computer. } \end{itemize} \end{frame} } { \begin{frame}{Case Study: Spin Chain in a Magnetic Field} \begin{itemize} \item{ Trotterizing the matrix exponential \begin{equation} \exp(t(A + B)) = \left(\exp(\frac{t}{N}A)\exp(\frac{t}{N}B)\right)^N + \mathcal{O}\left(\frac{t^2}{N^2}\right) \end{equation} } \item{ For $n=3$ spins one gets a circuit {\centering\adjustbox{max width=\textwidth}{ \Qcircuit @C=1em @R=.7em { & \qw & \gate{X} & \gate{R_{-\frac{t}{2N}}} & \gate{X} & \gate{R_{\frac{t}{2N}}} & \gate{X} & \gate{X} & \qw & \qw & \qw & \qw & \qw & \qw & \qw & \gate{H} & \gate{R_{-2\frac{gt}{2N}}} & \gate{H} & \gate{R_{\frac{gt}{2N}}} & \gate{X} & \gate{R_{\frac{gt}{2N}}} & \gate{X} & \gate{X} & \gate{R_{-\frac{t}{2N}}} & \gate{X} & \gate{R_{\frac{t}{2N}}} & \gate{X} & \gate{X} & \qw & \qw & \qw & \qw & \qw & \qw & \qw &\qw \\ & \qw & \ctrl{-1} & \qw & \qw & \qw & \qw & \ctrl{-1} & \qw & \gate{X} & \gate{R_{-\frac{t}{2N}}} & \gate{X} & \gate{R_{\frac{t}{2N}}} & \gate{X} & \gate{X} & \gate{H} & \gate{R_{-2\frac{gt}{2N}}} & \gate{H} & \gate{R_{\frac{gt}{2N}}} & \gate{X} & \gate{R_{\frac{gt}{2N}}} & \gate{X} & \ctrl{-1} & \qw & \qw & \qw & \qw & \ctrl{-1} & \qw & \gate{X} & \gate{R_{-\frac{t}{2N}}} & \gate{X} & \gate{R_{\frac{t}{2N}}} & \gate{X} & \gate{X} &\qw \\ & \qw & \qw & \qw & \qw & \qw & \qw & \qw & \qw & \ctrl{-1} & \qw & \qw & \qw & \qw & \ctrl{-1} & \gate{H} & \gate{R_{-2\frac{gt}{2N}}} & \gate{H} & \gate{R_{\frac{gt}{2N}}} & \gate{X} & \gate{R_{\frac{gt}{2N}}} & \gate{X} & \qw & \qw & \qw & \qw & \qw & \qw & \qw & \ctrl{-1} & \qw & \qw & \qw & \qw & \ctrl{-1} &\qw \\ } }} } \item{Applying this circuit $N$ times gives an approximation for the time evolution of a state.} \end{itemize} \end{frame} } { \begin{frame}{Case Study: Spin Chain in a Magnetic Field} \begin{figure}[h] \begin{center} \includegraphics[width=\linewidth]{spin_chain/time_evo_6spin_g3.png} \end{center} \end{figure} \end{frame} } \section{Stabilizers} { \begin{frame}{The multilocal Pauli Group and the Clifford Group} \begin{itemize} \item{\textbf{Definition} {\itshape $P := \{\pm1, \pm i\} \cdot \{X, Y, Z, I\}$ is called the Pauli group.\\ $P_n := \left\{p_1 \otimes ... \otimes p_n \middle| p_i \in P \right\}$ is called the multilocal Pauli group. }} \pause \item{ \textbf{Definition} {\itshape $C_n := \left\{U \in SU(2^n) \middle| \forall p \in P_n: U^\dagger p U \in P_n\right\}$ is called the Clifford group } } \pause \item{ One can show that $C_n$ is generated by $H, S, CZ_{i,j}$. } \end{itemize} \end{frame} } { \begin{frame}{Generators of a Group} \begin{itemize} \item{ \textbf{Definition} {\itshape For a finite group $G$ one says $G$ is generated by $g_1, ..., g_N$ iff any $g \in G$ can be expressed as a product of $g_1, ..., g_N$. These generators are chosen to be the minimal set for which this condition holds. One also writes \begin{equation} G = \langle g_1,...,g_N \rangle \equiv \langle g_i\rangle_i \end{equation} } } \item{ The generators are not unique. For instance $C_1$ can be generated using $H, S$ or $\sqrt{-iX}, \sqrt{iZ}$. } \pause \item{ The generators of a group have some kind of independence property. } \end{itemize} \end{frame} } { \begin{frame}{Stabilizers and Stabilizer Spaces} \begin{itemize} \item{ \textbf{Definition} {\itshape A finite abelian subgroup $S$ of $P_n$ is called a set of stabilizers iff $-I \notin S$ and all elements of $S$ commute. } } \item{ From $-I \notin S$ follows that all elements of $S$ are hermitian. } \item{ From the definition as tensor products of Pauli matrices follows that the elements of $S$ have eigenvalues $\pm1$. } \item{ These properties together yield that all elements of $S$ can be diagonalized simultaneously. Further there exists a vector space $V_S$ with $s \ket{\psi} = +1 \ket{\psi}$ for all $s \in S$ and all $\ket{\psi} \in V_S$. This space is called the stabilizer space of $S$ and all $\ket{\psi}$ are called stabilizer states. } \end{itemize} \end{frame} } { \begin{frame}{Stabilizer States} \begin{itemize} \item{ One can show that for $S = \langle S^{(i)} \rangle_{i=1,...,n}$ the stabilizer space $V_S$ has dimension $1$. } \item{ Therefore the state $\ket{\psi}$ that is the +1 eigenstate of all stabilizers is (up to a global phase) unique. } \item{Notable stabilizer states are: \begin{itemize} \item{ $\ket{0b0..0} = \ket{0}\otimes ... \otimes \ket{0}$ and $\ket{0b1..1} = \ket{1}\otimes ... \otimes \ket{1}$ which are stabilized by $\langle Z_i \rangle_i$ and $\langle -Z_i \rangle_i$ respectively. } \item{ $\ket{+}$ stabilized by $\langle X_i \rangle_i$ (and $\ket{-}$ analogously). } \item{ $\ket{0b00} + \ket{0b11}$ the Bell/EPR state which is stabilized by $\langle X_1X_2, Z_1Z_2\rangle$. } \end{itemize} } \end{itemize} \end{frame} } { \begin{frame}{Dynamics of Stabilizer States} \begin{itemize} \item{ Under a transformation $U \in SU(2^n)$ the state changes to \begin{equation} \ket{\psi'} = U \ket{\psi} \end{equation} } \item{ The stabilizers of $\ket{\psi}$ change to \begin{equation} \ket{\psi'} = U\ket{\psi} = US^{(i)}\ket{\psi} = US^{(i)}U^\dagger U\ket{\psi} = US^{(i)}U^\dagger\ket{\psi'} \end{equation} using this it is clear that for $U \in C_n$ the state $\ket{\psi'}$ is a stabilizer state again with the stabilizers $S' = \langle US^{(i)}U^\dagger\rangle_{i=1,...,n}$ } \item{ Under the transformations $C_n$ one can describe the dynamics of the stabilizer states by their stabilizers. } \item{Because the stabilizers are given by $n$ matrices which are the tensor product of $n$ Pauli matrices this can be simulated in $\mathcal{O}\left(n^2\right)$ time instead of $\mathcal{O}\left(2^n\right)$.} \end{itemize} \end{frame} } { \begin{frame}{Measurements on Stabilizer States} \begin{itemize} \item{ Consider a Pauli observable $g_a \in \{(-1)^s X_a, (-1)^s Y_a, (-1)^s Z_a\}$ and the projector onto its eigenspace $\frac{I + g_a}{2}$. } \item{If $g_a$ commutes with all $S^{(i)}$ the observable $g_a$ is diagonal in this basis and the stabilizer state $\ket{\psi}$ is the $+1$ eigenstate of $g_a$. Therefore the measurement is deterministic and the stabilizers remain unchanged.} \end{itemize} \end{frame} } { \begin{frame}{Measurements on Stabilizer States} \begin{itemize} \item{If $g_a$ does not commute with all stabilizers $A := \left\{S^{(i)} \middle| \left[g_a, S^{(i)}\right] \neq 0\right\}$ is the set of stabilizers that anticommute with $g_a$.} \item{ To compute the probability to measure a result of $s=0$ one can use the trace formula \begin{equation} \begin{aligned} P(s=0) &= \Tr(\frac{I + g_a}{2} \ket{\psi}\bra{\psi}) \\ &= \Tr(\frac{I + g_a}{2} S^{(j)} \ket{\psi}\bra{\psi}) \\ &= \Tr(S^{(j)}\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\ &= \Tr(\frac{I - g_a}{2} \ket{\psi}\bra{\psi}) \\ &= P(s=1)\\ \end{aligned} \end{equation} where $S^{(j)} \in A$. The stabilizer $S^{(j)}$ pulled to the right using the cyclic property of the trace and absorbed into the $\bra{\psi}$. } \end{itemize} \end{frame} } \section{Graphical Description of Stabilizer States} { \begin{frame}{Graphs} \begin{itemize} \item{\textbf{Definition} {\itshape The tuple $(V, E)$ is called a graph iff $V$ is a set of vertices with $|V| = n \in \mathbb{N}$ elements. In the following $V = \{0, ..., n-1\}$ will be used. $E$ is the set of edges $E \subset \left\{\{i, j\} \middle| i,j \in V, i \neq j\right\}$. }} \item{ Example for a valid graph:\\ \includegraphics[width=\linewidth,height=0.5\textheight,keepaspectratio]{graphs/valid_graph.png} } \end{itemize} \end{frame} } { \begin{frame}{ VOP-free Graph States} \begin{itemize} \item{\textbf{Definition} {\itshape For $G = (V,E)$, $i \in V$ define \begin{equation} K_G^{(i)} := X_i \prod\limits_{\{i,j\} \in E} Z_j \end{equation} the stabilizers associated with the graph $G$. }} \item{ The state stabilized by all $K_G^{(i)}$ is \begin{equation} \ket{\bar{G}} = \prod\limits_{\{i,j\} \in E} CZ_{i,j} \ket{+}. \end{equation} This state is called vertex operator-free (VOP-free) graph state. } \item{ Applying a $CZ_{i,j}$ gate toggles the edge $\{i,j\}$ in $E$. } \end{itemize} \end{frame} } { \begin{frame}{Dynamics of VOP-free Graph States} \begin{itemize} \item{ For $a \in V$ the transformation \begin{equation} M_a := \sqrt{-iX_i} \prod\limits_{\{i,j\} \in E} \sqrt{iZ_j} \end{equation} toggles the neighbourhood $n_a := \left\{ j \middle| \{a,j\} \in E\right\}$ of a. } \item{ Many Clifford operations cannot be described by the VOP-free graph states.\\ Example: \begin{equation} G = \left(\{0, 1\}, \{\}\right) %\ket{\bar{G}} &= \ket{+}\\ %U &= H_0H_1 \\ %U \ket{\bar{G}} &= \ket{\mbox{0b}00}\\ \end{equation} } \end{itemize} \end{frame} } \end{document}