initial tests
This commit is contained in:
commit
e72a1a118d
3
tests/graph_storage/array_sorted_list/setup.py
Normal file
3
tests/graph_storage/array_sorted_list/setup.py
Normal file
|
@ -0,0 +1,3 @@
|
|||
from distutils.core import setup, Extension
|
||||
setup(name="sorted_list", version="1.0",
|
||||
ext_modules=[Extension("sorted_list", ["sorted_list.c"], extra_compile_args=["-g"])])
|
375
tests/graph_storage/array_sorted_list/sorted_list.c
Normal file
375
tests/graph_storage/array_sorted_list/sorted_list.c
Normal file
|
@ -0,0 +1,375 @@
|
|||
#ifdef C_TEST
|
||||
#define npy_intp int64_t
|
||||
#else
|
||||
#include <Python.h>
|
||||
#include <numpy/ndarraytypes.h>
|
||||
//#include <numpy/ufuncobject.h>
|
||||
#include <structmember.h>
|
||||
#endif
|
||||
#include <stdlib.h>
|
||||
|
||||
typedef struct ll_node_s
|
||||
{
|
||||
struct ll_node_s * next;
|
||||
npy_intp value;
|
||||
} ll_node_t;
|
||||
|
||||
void
|
||||
ll_recursively_delete_list(ll_node_t * list)
|
||||
{
|
||||
ll_node_t * next_node;
|
||||
while(list)
|
||||
{
|
||||
next_node = list->next;
|
||||
free(list);
|
||||
list = next_node;
|
||||
}
|
||||
}
|
||||
|
||||
ll_node_t *
|
||||
ll_node_t_new(ll_node_t * next, npy_intp value)
|
||||
{
|
||||
ll_node_t * node = malloc(sizeof(ll_node_t));
|
||||
if(!node)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
node->next = next;
|
||||
node->value = value;
|
||||
return node;
|
||||
}
|
||||
|
||||
int
|
||||
ll_insert_value(ll_node_t ** list, npy_intp value)
|
||||
{
|
||||
ll_node_t * current_node;
|
||||
ll_node_t * last_node;
|
||||
ll_node_t * new_node;
|
||||
|
||||
if(!*list)
|
||||
{
|
||||
*list = ll_node_t_new(NULL, value);
|
||||
if(*list)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
current_node = *list;
|
||||
last_node = *list;
|
||||
while(current_node && current_node->value < value)
|
||||
{
|
||||
last_node = current_node;
|
||||
current_node = current_node->next;
|
||||
|
||||
}
|
||||
|
||||
if(current_node && current_node->value == value)
|
||||
{
|
||||
return 2;
|
||||
}
|
||||
|
||||
|
||||
new_node = ll_node_t_new(current_node, value);
|
||||
if(!new_node)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
// This is the case, when we set the first element.
|
||||
if(current_node == last_node)
|
||||
{
|
||||
*list = new_node;
|
||||
return 0;
|
||||
}
|
||||
last_node->next = new_node;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
ll_delete_value(ll_node_t ** list, npy_intp value)
|
||||
{
|
||||
ll_node_t * current_node;
|
||||
ll_node_t * last_node;
|
||||
|
||||
current_node = *list;
|
||||
last_node = *list;
|
||||
|
||||
while(current_node && current_node->value < value)
|
||||
{
|
||||
last_node = current_node;
|
||||
current_node = current_node->next;
|
||||
}
|
||||
|
||||
if(!current_node || current_node->value != value)
|
||||
{
|
||||
return 2;
|
||||
}
|
||||
|
||||
if(current_node == last_node)
|
||||
{
|
||||
*list = current_node->next;
|
||||
}
|
||||
|
||||
last_node->next = current_node->next;
|
||||
free(current_node);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
ll_has_value(ll_node_t * list, npy_intp value)
|
||||
{
|
||||
while(list && list->value < value)
|
||||
{
|
||||
list = list->next;
|
||||
}
|
||||
|
||||
if(list && list->value == value)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef C_TEST
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
void
|
||||
print_list(ll_node_t * list)
|
||||
{
|
||||
while(list)
|
||||
{
|
||||
printf("%d->", list->value);
|
||||
list = list->next;
|
||||
}
|
||||
printf("NULL\n");
|
||||
}
|
||||
|
||||
int
|
||||
main(void)
|
||||
{
|
||||
ll_node_t * list = NULL;
|
||||
int i;
|
||||
|
||||
npy_intp array[15] = {14, 5, 3, 13, 11, 2, 6, 1, 12, 4, 9, 10, 0, 7, 8};
|
||||
|
||||
for(i = 0; i < 15; i++)
|
||||
{
|
||||
ll_insert_value(&list, array[i]);
|
||||
}
|
||||
|
||||
print_list(list);
|
||||
|
||||
ll_delete_value(&list, 5);
|
||||
print_list(list);
|
||||
|
||||
ll_delete_value(&list, 0);
|
||||
print_list(list);
|
||||
|
||||
printf("HAS 2 %d\n", ll_has_value(list, 2));
|
||||
printf("HAS 5 %d\n", ll_has_value(list, 5));
|
||||
printf("HAS 20 %d\n", ll_has_value(list, 20));
|
||||
|
||||
|
||||
ll_recursively_delete_list(list);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
#else
|
||||
|
||||
typedef struct
|
||||
{
|
||||
PyObject_HEAD
|
||||
ll_node_t ** lists;
|
||||
npy_intp length;
|
||||
|
||||
} ALL_Array;
|
||||
|
||||
static int
|
||||
ALL_Array_init(ALL_Array * self
|
||||
, PyObject * args
|
||||
, PyObject * kwds)
|
||||
{
|
||||
static char * kwrds[] = {"length", NULL};
|
||||
npy_intp length;
|
||||
|
||||
if(!PyArg_ParseTupleAndKeywords(args, kwds, "I", kwrds, &length))
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
if(length <= 0)
|
||||
{
|
||||
PyErr_SetString(PyExc_ValueError, "length must be positive");
|
||||
return -1;
|
||||
}
|
||||
|
||||
self->lists = calloc(sizeof(ll_node_t), length);
|
||||
self->length = length;
|
||||
if(!self->lists)
|
||||
{
|
||||
PyErr_SetString(PyExc_MemoryError, "out of memory");
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
ALL_Array_getitem(ALL_Array * self
|
||||
, PyObject * args)
|
||||
{
|
||||
// Somehow PyArg_ParseTuple does utter crap if I
|
||||
// do not set i and j explicitly before calling PyArg_ParseTuple.
|
||||
npy_intp i = 0xdeadbeef, j = 0xdeadbeef, swp, result;
|
||||
PyObject * result_obj;
|
||||
|
||||
if(!PyArg_ParseTuple(args, "II", &i, &j))
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(i < j)
|
||||
{
|
||||
swp = i;
|
||||
i = j;
|
||||
j = swp;
|
||||
}
|
||||
|
||||
if(j < 0)
|
||||
{
|
||||
PyErr_SetString(PyExc_KeyError, "index must be positive");
|
||||
return NULL;
|
||||
}
|
||||
if(i >= self->length)
|
||||
{
|
||||
PyErr_SetString(PyExc_KeyError, "index out of range");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
result = ll_has_value(self->lists[i], j);
|
||||
result_obj = Py_BuildValue("i", result);
|
||||
return result_obj;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
ALL_Array_setitem(ALL_Array * self
|
||||
, PyObject * args)
|
||||
{
|
||||
npy_intp i = 0xdeadbeef, j = 0xdeadbeef, swp, value = 0xdeadbeef;
|
||||
//npy_intp i, j, swp, value;
|
||||
int result;
|
||||
|
||||
if(!PyArg_ParseTuple(args, "IIp", &i, &j, &value))
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
if(i < j)
|
||||
{
|
||||
swp = i;
|
||||
i = j;
|
||||
j = swp;
|
||||
}
|
||||
|
||||
if(i >= self->length)
|
||||
{
|
||||
PyErr_SetString(PyExc_KeyError, "index out of range");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(value)
|
||||
{
|
||||
result = ll_insert_value(&(self->lists[i]), j);
|
||||
if(result == 2)
|
||||
{
|
||||
PyErr_SetString(PyExc_ValueError, "element is already set");
|
||||
return NULL;
|
||||
}
|
||||
if(result == 1)
|
||||
{
|
||||
PyErr_SetString(PyExc_MemoryError, "failed to allocate new node");
|
||||
return NULL;
|
||||
}
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
else
|
||||
{
|
||||
result = ll_delete_value(&(self->lists[i]), j);
|
||||
|
||||
if(result)
|
||||
{
|
||||
PyErr_SetString(PyExc_ValueError, "element is not set");
|
||||
return NULL;
|
||||
}
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
ALL_Array_dealloc(ALL_Array * self)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < self->length; i++)
|
||||
{
|
||||
ll_recursively_delete_list(self->lists[i]);
|
||||
}
|
||||
free(self->lists);
|
||||
Py_TYPE(self)->tp_free((PyObject *) self);
|
||||
}
|
||||
|
||||
static PyMemberDef ALL_Array_members[] = {{NULL}};
|
||||
static PyMethodDef ALL_Array_methods[] = {
|
||||
{"setitem", (PyCFunction) ALL_Array_setitem, METH_VARARGS, "sets an item"}
|
||||
, {"getitem", (PyCFunction) ALL_Array_getitem, METH_VARARGS, "gets an item"}
|
||||
, {NULL}
|
||||
};
|
||||
|
||||
static PyTypeObject ALL_ArrayType = {
|
||||
PyVarObject_HEAD_INIT(NULL, 0)
|
||||
.tp_name = "sorted_list.ALL_Array",
|
||||
.tp_doc = "special type for graph representation",
|
||||
.tp_basicsize = sizeof(ALL_Array),
|
||||
.tp_itemsize = 0,
|
||||
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
|
||||
.tp_new = PyType_GenericNew,
|
||||
.tp_init = (initproc) ALL_Array_init,
|
||||
.tp_dealloc = (destructor) ALL_Array_dealloc,
|
||||
.tp_members = ALL_Array_members,
|
||||
.tp_methods = ALL_Array_methods,
|
||||
};
|
||||
|
||||
static PyModuleDef sorted_listmodule = {
|
||||
PyModuleDef_HEAD_INIT,
|
||||
.m_name = "sorted_list",
|
||||
.m_doc = "module containing a special graph storage class",
|
||||
.m_size = -1,
|
||||
};
|
||||
|
||||
PyMODINIT_FUNC
|
||||
PyInit_sorted_list(void)
|
||||
{
|
||||
PyObject * m;
|
||||
if(PyType_Ready(&ALL_ArrayType) < 0)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
m = PyModule_Create(&sorted_listmodule);
|
||||
if(!m)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
Py_INCREF(&ALL_ArrayType);
|
||||
if(PyModule_AddObject(m, "ALL_Array", (PyObject *) &ALL_ArrayType) < 0)
|
||||
{
|
||||
Py_DECREF(&ALL_ArrayType);
|
||||
Py_DECREF(m);
|
||||
return NULL;
|
||||
}
|
||||
return m;
|
||||
}
|
||||
#endif
|
9
tests/graph_storage/array_sorted_list/test.py
Normal file
9
tests/graph_storage/array_sorted_list/test.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
from sorted_list import ALL_Array
|
||||
a = ALL_Array(1000)
|
||||
print("constructed ALL_Array:", a)
|
||||
|
||||
print("getting an item from array ...")
|
||||
print(a.getitem(1, 100))
|
||||
|
||||
a.setitem(1, 100, True)
|
||||
print(a.getitem(1, 100))
|
96
tests/graph_storage/plot_all_array.py
Normal file
96
tests/graph_storage/plot_all_array.py
Normal file
|
@ -0,0 +1,96 @@
|
|||
import timeit
|
||||
import itertools
|
||||
import sys
|
||||
import random
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as mtick
|
||||
|
||||
from sorted_list import ALL_Array
|
||||
|
||||
plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2e'))
|
||||
plt.gcf().set_figheight(10)
|
||||
plt.gcf().set_figwidth(20)
|
||||
|
||||
def construction(node_number):
|
||||
return ALL_Array(node_number)
|
||||
|
||||
number = 100
|
||||
repeat = 100
|
||||
node_numbers = [100, 500, 1000, 1500, 2000, 3000, 4000, 6000, 8000, 10000, 20000, 50000, 100000, 500000, 1000000]
|
||||
|
||||
result = list()
|
||||
|
||||
for node_number in node_numbers:
|
||||
print("running trial with", node_number, "nodes... ", end="", flush=True)
|
||||
timer = timeit.Timer(lambda: construction(node_number))
|
||||
result.append(min(timer.repeat(repeat=repeat, number=number)) / number)
|
||||
print("done")
|
||||
|
||||
h0, = plt.plot(node_numbers, result, "go-", label="Graph Construction Time in $s$")
|
||||
plt.title("Graph Construction Time in Seconds ({} loops, best out of {})".format(number, repeat))
|
||||
plt.xlabel("Number of Nodes")
|
||||
plt.ylabel("Time in $s$")
|
||||
plt.legend(handles=[h0])
|
||||
|
||||
plt.savefig("runtime_all_array_graph_construction.png", dpi=400)
|
||||
print("figure saved to runtime_all_array_graph_construction.png")
|
||||
|
||||
plt.clf()
|
||||
plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2e'))
|
||||
plt.gcf().set_figheight(10)
|
||||
plt.gcf().set_figwidth(20)
|
||||
|
||||
edge_counts = [10, 20, 50, 100, 500, 1000]
|
||||
edge_counts = [e * 10 for e in edge_counts]
|
||||
|
||||
def add_edges(edges, node_number):
|
||||
g = construction(node_number)
|
||||
for edge in edges:
|
||||
g.setitem(*edge, 1)
|
||||
|
||||
#edges = [[(list(itertools.product(list(range(e//2, e//2 + e//4)), 2))[:c], e)
|
||||
# for e in node_numbers]
|
||||
# for c in edge_counts]
|
||||
|
||||
|
||||
|
||||
edges = []
|
||||
for c in edge_counts:
|
||||
m = []
|
||||
for e in node_numbers:
|
||||
edge_from = list(range(e//2))
|
||||
edge_to = list(range(e//2, e//2 + e//4))
|
||||
|
||||
random.shuffle(edge_from)
|
||||
random.shuffle(edge_to)
|
||||
|
||||
m.append(([i for i,_ in zip(itertools.product(edge_from, edge_to), range(c))], e))
|
||||
edges.append(m)
|
||||
|
||||
#results = [[min(timeit.Timer(lambda: add_edges(*e)).repeat(repeat=repeat, number=number) for e in i]
|
||||
# for i in edges]
|
||||
|
||||
results = []
|
||||
|
||||
for i,edge_count in zip(edges, edge_counts):
|
||||
m = []
|
||||
for e,node_number in zip(i, node_numbers):
|
||||
print("running trial with", node_number, "nodes;", edge_count, "edges ... ", end="", flush=True)
|
||||
m.append(min(timeit.Timer(lambda: add_edges(*e)).repeat(repeat=repeat, number=number)) / number)
|
||||
print("done")
|
||||
results.append(m)
|
||||
|
||||
|
||||
# remove construction time
|
||||
results = [[(t - ct) / edge_count for t, ct in zip(times, result)] for times, edge_count in zip(results, edge_counts)]
|
||||
|
||||
handles = [plt.plot(node_numbers, result, label="When adding {} edges".format(ec))[0] for result, ec in zip(results, edge_counts)]
|
||||
|
||||
plt.legend(handles=handles)
|
||||
|
||||
plt.title("Time to add one Edge in Seconds ({} loops, best out of {})".format(number, repeat))
|
||||
plt.xlabel("Number of Nodes")
|
||||
plt.ylabel("Time in $s$")
|
||||
|
||||
plt.savefig("runtime_all_array_graph_add_edges.png", dpi=400)
|
||||
print("figure saved to runtime_all_array_graph_add_edges.png")
|
96
tests/graph_storage/plot_dok.py
Normal file
96
tests/graph_storage/plot_dok.py
Normal file
|
@ -0,0 +1,96 @@
|
|||
import timeit
|
||||
import itertools
|
||||
import sys
|
||||
import random
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as mtick
|
||||
|
||||
from scipy.sparse import dok_matrix
|
||||
|
||||
|
||||
plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2e'))
|
||||
plt.gcf().set_figheight(10)
|
||||
plt.gcf().set_figwidth(20)
|
||||
|
||||
def construction(node_number):
|
||||
return dok_matrix((node_number, node_number))
|
||||
|
||||
number = 100
|
||||
repeat = 100
|
||||
node_numbers = [100, 500, 1000, 1500, 2000, 3000, 4000, 6000, 8000, 10000, 20000, 50000, 100000, 500000, 1000000]
|
||||
|
||||
result = list()
|
||||
|
||||
for node_number in node_numbers:
|
||||
print("running trial with", node_number, "nodes... ", end="", flush=True)
|
||||
timer = timeit.Timer(lambda: construction(node_number))
|
||||
result.append(min(timer.repeat(repeat=repeat, number=number)) / number)
|
||||
print("done")
|
||||
|
||||
h0, = plt.plot(node_numbers, result, "go-", label="Graph Construction Time in $s$")
|
||||
plt.title("Graph Construction Time in Seconds ({} loops, best out of {})".format(number, repeat))
|
||||
plt.xlabel("Number of Nodes")
|
||||
plt.ylabel("Time in $s$")
|
||||
plt.legend(handles=[h0])
|
||||
|
||||
plt.savefig("runtime_dok_matrix_graph_construction.png", dpi=400)
|
||||
print("figure saved to runtime_dok_matrix_graph_construction.png")
|
||||
|
||||
plt.clf()
|
||||
plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2e'))
|
||||
plt.gcf().set_figheight(10)
|
||||
plt.gcf().set_figwidth(20)
|
||||
|
||||
edge_counts = [10, 20, 50, 100, 500, 1000]
|
||||
edge_counts = [e * 10 for e in edge_counts]
|
||||
|
||||
def add_edges(edges, node_number):
|
||||
g = construction(node_number)
|
||||
for edge in edges:
|
||||
g[edge] = 1
|
||||
|
||||
#edges = [[(list(itertools.product(list(range(e//2, e//2 + e//4)), 2))[:c], e)
|
||||
# for e in node_numbers]
|
||||
# for c in edge_counts]
|
||||
|
||||
|
||||
edges = []
|
||||
for c in edge_counts:
|
||||
m = []
|
||||
for e in node_numbers:
|
||||
edge_from = list(range(e//2))
|
||||
edge_to = list(range(e//2, e//2 + e//4))
|
||||
|
||||
random.shuffle(edge_from)
|
||||
random.shuffle(edge_to)
|
||||
|
||||
m.append(([i for i,_ in zip(itertools.product(edge_from, edge_to), range(c))], e))
|
||||
edges.append(m)
|
||||
|
||||
#results = [[min(timeit.Timer(lambda: add_edges(*e)).repeat(repeat=repeat, number=number) for e in i]
|
||||
# for i in edges]
|
||||
|
||||
results = []
|
||||
|
||||
|
||||
for i,edge_count in zip(edges, edge_counts):
|
||||
m = []
|
||||
for e,node_number in zip(i, node_numbers):
|
||||
print("running trial with", node_number, "nodes;", edge_count, "edges ... ", end="", flush=True)
|
||||
m.append(min(timeit.Timer(lambda: add_edges(*e)).repeat(repeat=repeat, number=number)) / number)
|
||||
print("done")
|
||||
results.append(m)
|
||||
|
||||
# remove construction time
|
||||
results = [[(t - ct) / edge_count for t, ct in zip(times, result)] for times, edge_count in zip(results, edge_counts)]
|
||||
|
||||
handles = [plt.plot(node_numbers, result, label="When adding {} edges".format(ec))[0] for result, ec in zip(results, edge_counts)]
|
||||
|
||||
plt.legend(handles=handles)
|
||||
|
||||
plt.title("Time to add one Edge in Seconds ({} loops, best out of {})".format(number, repeat))
|
||||
plt.xlabel("Number of Nodes")
|
||||
plt.ylabel("Time in $s$")
|
||||
|
||||
plt.savefig("runtime_all_array_graph_add_edges.png", dpi=400)
|
||||
print("figure saved to runtime_dok_matrix_graph_add_edges.png")
|
90
tests/graph_storage/plot_networkx.py
Normal file
90
tests/graph_storage/plot_networkx.py
Normal file
|
@ -0,0 +1,90 @@
|
|||
import timeit
|
||||
import itertools
|
||||
import sys
|
||||
import random
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as mtick
|
||||
|
||||
from networkx import Graph
|
||||
|
||||
plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2e'))
|
||||
plt.gcf().set_figheight(10)
|
||||
plt.gcf().set_figwidth(20)
|
||||
|
||||
def construction(node_number):
|
||||
g = Graph()
|
||||
g.add_nodes_from(list(range(node_number)))
|
||||
return g
|
||||
|
||||
number = 100
|
||||
repeat = 100
|
||||
node_numbers = [100, 500, 1000, 1500, 2000, 3000, 4000, 6000, 8000, 10000, 20000, 50000, 100000, 500000, 1000000]
|
||||
|
||||
result = list()
|
||||
|
||||
for node_number in node_numbers:
|
||||
print("running trial with", node_number, "nodes... ", end="", flush=True)
|
||||
timer = timeit.Timer(lambda: construction(node_number))
|
||||
result.append(min(timer.repeat(repeat=repeat, number=number)) / number)
|
||||
print("done")
|
||||
|
||||
h0, = plt.plot(node_numbers, result, "go-", label="Graph Construction Time in $s$")
|
||||
plt.title("Graph Construction Time in Seconds ({} loops, best out of {})".format(number, repeat))
|
||||
plt.xlabel("Number of Nodes")
|
||||
plt.ylabel("Time in $s$")
|
||||
plt.legend(handles=[h0])
|
||||
|
||||
plt.savefig("runtime_networkx_graph_construction.png", dpi=400)
|
||||
print("figure saved to runtime_networkx_graph_construction.png")
|
||||
|
||||
plt.clf()
|
||||
plt.gca().yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2e'))
|
||||
plt.gcf().set_figheight(10)
|
||||
plt.gcf().set_figwidth(20)
|
||||
|
||||
edge_counts = [10, 20, 50, 100, 500, 1000]
|
||||
edge_counts = [e * 10 for e in edge_counts]
|
||||
|
||||
def add_edges(edges, node_number):
|
||||
g = construction(node_number)
|
||||
for edge in edges:
|
||||
g.add_edge(*edge)
|
||||
|
||||
#edges = [[(list(itertools.product(list(range(e//2, e//2 + e//4)), 2))[:c], e)
|
||||
# for e in node_numbers]
|
||||
# for c in edge_counts]
|
||||
edges = []
|
||||
for c in edge_counts:
|
||||
m = []
|
||||
for e in node_numbers:
|
||||
m.append(([i for i,_ in zip(itertools.product(list(range(e//2))
|
||||
, list(range(e//2, e//2 + e//4))), range(c))], e))
|
||||
edges.append(m)
|
||||
|
||||
#results = [[min(timeit.Timer(lambda: add_edges(*e)).repeat(repeat=repeat, number=number) for e in i]
|
||||
# for i in edges]
|
||||
|
||||
results = []
|
||||
|
||||
for i,edge_count in zip(edges, edge_counts):
|
||||
m = []
|
||||
for e,node_number in zip(i, node_numbers):
|
||||
print("running trial with", node_number, "nodes;", edge_count, "edges ... ", end="", flush=True)
|
||||
m.append(min(timeit.Timer(lambda: add_edges(*e)).repeat(repeat=repeat, number=number)) / number)
|
||||
print("done")
|
||||
results.append(m)
|
||||
|
||||
|
||||
# remove construction time
|
||||
results = [[(t - ct) / edge_count for t, ct in zip(times, result)] for times, edge_count in zip(results, edge_counts)]
|
||||
|
||||
handles = [plt.plot(node_numbers, result, label="When adding {} edges".format(ec))[0] for result, ec in zip(results, edge_counts)]
|
||||
|
||||
plt.legend(handles=handles)
|
||||
|
||||
plt.title("Time to add one Edge in Seconds ({} loops, best out of {})".format(number, repeat))
|
||||
plt.xlabel("Number of Nodes")
|
||||
plt.ylabel("Time in $s$")
|
||||
|
||||
plt.savefig("runtime_networkx_graph_add_edges.png", dpi=400)
|
||||
print("figure saved to runtime_networkx_graph_add_edges.png")
|
3
tests/graph_storage/requirements.tx
Normal file
3
tests/graph_storage/requirements.tx
Normal file
|
@ -0,0 +1,3 @@
|
|||
#graph-tool
|
||||
networkx
|
||||
scipy
|
Loading…
Reference in New Issue
Block a user