diff --git a/thesis/chapters/stabilizer.tex b/thesis/chapters/stabilizer.tex index 5c16891..4af95de 100644 --- a/thesis/chapters/stabilizer.tex +++ b/thesis/chapters/stabilizer.tex @@ -31,7 +31,7 @@ the elements of $P$ either commute or anticommute. For $n$ qbits \begin{equation} - P_n := \{\bigotimes\limits_{i=0}^{n-1} p_i | p_i \in P\} + P_n := \left\{\bigotimes\limits_{i=0}^{n-1} p_i | p_i \in P\right\} \end{equation} is called the multilocal Pauli group on $n$ qbits. @@ -204,4 +204,94 @@ product of $n$ Pauli matrices. This has led to the simulation using stabilizer t \cite{gottesman_aaronson2008}. Interestingly also measurements are dynamics covered by the stabilizers. -When an observable $g_i \in \{\pm X_i, \pm Y_i \pm Z_i\}$ is measured +When an observable $g_a \in \{\pm X_a, \pm Y_a \pm Z_a\}$ acting on qbit $a$ is measured +one has to consider the projector + +\begin{equation} + P_{g_a,s} = \frac{I + (-1)^s g_a}{2} +\end{equation} + +If now $g_a$ commutes with all $S^{(i)}$ a result of $s=0$ is measured with probability $1$ +and the stabilizers are left unchanged: + +\begin{equation} + \begin{aligned} + \ket{\psi'} &= \frac{I + g_a}{2}\ket{\psi} \\ + &= \frac{I + g_a}{2}S^{(i)} \ket{\psi} \\ + &= S^{(i)} \frac{I + g_a}{2}\ket{\psi} \\ + &= S^{(i)}\ket{\psi'} \\ + \end{aligned} +\end{equation} + +As the state that is stabilized by $S$ is unique $\ket{\psi'} = \ket{\psi}$. + +If $g_a$ does not commute with all stabilizers the following lemma gives +the result of the measurement. + +\begin{lemma} + \label{lemma:stab_measurement} + Let $J := \{ S^{(i)} | [g_a, S^{(i)}] \neq 0\} \neq \{\}$. When measuring + $\frac{I + (-1)^s g_a}{2} $ + $1$ and $0$ are obtained with probability $\frac{1}{2}$ and after choosing + a $j \in J$ the new state $\ket{\psi'}$ is stabilized by + \begin{equation} + \langle \{(-1)^s g_a\} \cup \{S^{(i)} S^{(j)} | S^{(i)} \in J \setminus \{S^{(j)}\} \} \cup J^c\rangle + \end{equation} +\end{lemma} + +\begin{proof} + As $g_a$ is a Pauli operator and $S^{(i)} \in J$ are multi-local Pauli operators, + $S^{(i)}$ and $g_a$ anticommute. Choose a $S^{(j)} \in J$. Then + + \begin{equation} + \begin{aligned} + P(s=+1) &= \hbox{Tr}\left(\frac{I + g_a}{2}\ket{\psi}\bra{\psi}\right) \\ + &= \hbox{Tr}\left(\frac{I + g_a}{2}S^{(j)} \ket{\psi}\bra{\psi}\right)\\ + &= \hbox{Tr}\left(S^{(j)}\frac{I - g_a}{2}\ket{\psi}\bra{\psi}\right)\\ + &= \hbox{Tr}\left(\frac{I - g_a}{2}\ket{\psi}\bra{\psi}S^{(j)}\right)\\ + &= \hbox{Tr}\left(\frac{I - g_a}{2}\ket{\psi}\bra{\psi}\right)\\ + &= P(s=-1) + \end{aligned} + \notag + \end{equation} + + With $P(s=+1) + P(s=-1) = 1$ follows $P(s=+1) = \frac{1}{2} = P(s=-1)$. + Further for $S^{(i)},S^{(j)} \in J$ + + \begin{equation} + \begin{aligned} + \frac{I + (-1)^sg_a}{2}\ket{\psi} &= \frac{I + (-1)^sg_a}{2}S^{(j)}S^{(i)} \ket{\psi} \\ + &= S^{(j)}\frac{I + (-1)^{s + 1}g_a}{2}S^{(i)} \ket{\psi} \\ + &= S^{(j)}S^{(i)}\frac{I + (-1)^{s + 2}g_a}{2}\ket{\psi} \\ + &= S^{(j)}S^{(i)}\frac{I + (-1)^sg_a}{2}\ket{\psi} + \end{aligned} + \notag + \end{equation} + + the state after measurement is stabilized by $S^{(j)}S^{(i)}$ $i,j \in J$, and by + $S^{(i)} \in J^c$. $(-1)^sg_a$ trivially stabilizes $\ket{\psi'}$. +\end{proof} + +\subsection{The VOP-free Graph States} + +This section will discuss the vertex operator(VOP)-free graph states. Why they are called +vertex operator-free will be clear in the following section about graph states. + +\begin{definition} + The tuple $(V, E)$ is called a graph iff $V$ is a set of vertices with $|V| = n \in \mathbb{N}$. + In the following $V = \{0, ..., n-1\}$ will be used. + $E$ is the set of edges $E = \left\{\{i, j\} | i,i \in V, i \neq j\right\}$. +\end{definition} + +This definition of a graph is way less general than the definition of a mathematical graph. +Using this definition will however allow to avoid an extensive list of constraints on the +mathematical graph that are implied in this definition. + +\begin{definition} + For a graph $G = (V = \{0, ..., n-1\}, E)$ the associated stabilizers are + \begin{equation} + K_G^{(i)} := X_i \prod\limits_{\{i,j\} \in E} Z_i + \end{equation} + for all $i \in V$. The vertex operator free graph state $\ket{\bar{G}}$ is the state stabilized by + $\langle K_G^{(i)} \rangle_{i = 0, ..., n-1}$. +\end{definition}