From dba87f0d7d54d70d12d0f7fcd3039717af9a2123 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Daniel=20Kn=C3=BCttel?= Date: Mon, 16 Mar 2020 13:20:09 +0100 Subject: [PATCH] fixed something here --- thesis/chapters/quantum_computing.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/thesis/chapters/quantum_computing.tex b/thesis/chapters/quantum_computing.tex index 3a33796..af067d8 100644 --- a/thesis/chapters/quantum_computing.tex +++ b/thesis/chapters/quantum_computing.tex @@ -15,8 +15,8 @@ \end{definition} A gate acting on a qbit is a unitary operator $G \in U(2)$. One can show that -$\forall G \in U(2)$ $G$ can be approximated arbitrarily good as a product of unitary generator matrices -\cite[Chapter 4.3]{kaye_ea2007}\cite[Chapter 2]{marquezino_ea_2019}; +$\forall G \in U(2)$ $G$ can be written as a product of unitary generator matrices +\cite[Chapter 4.2]{nielsen_chuang_2010}\cite[Chapter 4.3]{kaye_ea2007}\cite[Chapter 2]{marquezino_ea_2019}; common choices for the generators are $ X, H, R_{\phi}$ or $Z, H, R_{\phi}$ with \label{ref:singleqbitgates}