some final work

This commit is contained in:
2020-04-09 11:46:22 +02:00
parent 434285f9fe
commit d3e38f6f7e
15 changed files with 209 additions and 158 deletions

View File

@@ -6,6 +6,7 @@
\usepackage{setspace}
\usepackage{amsmath}
\usepackage{hyperref}
\usepackage{url}
\usepackage{geometry}
\usepackage{enumerate}
\usepackage{physics}
@@ -13,7 +14,7 @@
%\usepackage{struktex}
\usepackage{qcircuit}
\usepackage{adjustbox}
\usepackage{tikz}
%\usepackage{tikz}
\usetheme{metropolis}
@@ -71,7 +72,7 @@
\item{A universal quantum computer is a $2^n$ dimensional complex vector
to which any unitary can be applied with a quantum mechanical measurement process.}
\item{Algorithms using the exponentially large Hilbert space can
solve classically exponentially hard problems in polynomial time.}
solve some classically exponentially hard problems in polynomial time.}
\end{itemize}
\end{frame}
@@ -275,9 +276,24 @@
starting from the $\ket{0}^{\otimes n}$ state can be
simulated and sampled efficiently, i.e. in $\mbox{poly}(n, m)$ time
where $m$ is the amount of gates/measurements.}
\end{itemize}
\end{frame}
}
{
\begin{frame}{The Gottesman-Knill Theorem}
\begin{itemize}
\item{Note that a general state has $2^n$ complex coefficients.
Computing operations on this state is therefore exponentially hard in
$n$.}
\item{Note that using the $R_\phi$ is universal and $R_\frac{\pi}{4}$
allows rational approximations of universal gates.}
\item{Restricting $\phi$ to $\frac{\pi}{2}$ allows the simulation of
large numbers of qbits on a classical computer.\\
{\bf Goal of this project is to create a simulator that can
simulate several thousand up to millions of qbits.
}}
\end{itemize}
\end{frame}
@@ -349,13 +365,9 @@
\begin{itemize}
\item{In general a Clifford gate $U \in C_n$ will map a stabilizer state to another stabilizer state.
The new state is stabilized by $\langle U S^{(i)} U^\dagger \rangle_i$.}
\item{A Pauli observable $g_a \in \{X_a, Y_a, Z_a\}$ will either commute with all stabilizers
(in this case $g_a$ is a stabilizer, the measurement is deterministic and the stabilizers are unchanged) or
or anticommute with at least one stabilizer.}
\item{If $g_a$ anticommutes with a subset $A := \{S^{(i)} | \{S^{(i)}, g_a\} = 0 \}$
the probability to measure $+1$ or $-1$ is $\frac{1}{2}$ and the stabilizers $A$
are changed.}
\item{When going from $+g_a$ to $-g_a$ the results are changed from $+1$ to $-1$ and vice versa.}
\item{One can show that measurements of Pauli observables are covered by the stabilizer formalism.}
\item{When measuring Pauli observable probability amplitudes of $0, 1$ or $\frac{1}{2}$ are
possible.}
\end{itemize}
\end{frame}
}
@@ -363,14 +375,13 @@
{
\begin{frame}{Graphical States}
\begin{itemize}
\item{The graphical representation of stabilizer states is an optimized way to write
\item{The graphical representation is an optimized way to write
the stabilizers.}
\item{
$(V, E, O)$ is called the graphical representation of
a stabilizer state if $V = \{0, ..., n-1\}$,
$E \subset \{\{i,j\} | i,j \in V, i \neq j \}$ and
$O = \{o_0, ..., o_{n-1}\}$ where $o_i \in C_1$.
$G = (V, E)$ is a graph, $O$ are called vertex operators.
For a set of vertices $V = \{0, ..., n-1\}$, some edges
$E \subset V \otimes V$, and local Clifford operators
$O = \{o_0, ..., o_{n-1}\}$ the tuple $(V, E, O)$
is the graphical representation of a stabilizer state.
}
\item{The state associated with $(V, E, O)$ is given by
\begin{equation}
@@ -570,8 +581,20 @@
{
\begin{frame}{Implementation}
\noindent\begin{minipage}{0.5\textwidth}
\center
\includegraphics[width=\textwidth,height=0.8\textheight,keepaspectratio=true]{screenshot_github.png}
\end{minipage} \hfill
\begin{minipage}{0.4\textwidth}
{\small
\begin{itemize}
\item{The code is GPLv3.0 licensed.}
\item{GitHub repository: \url{https://github.com/daknuett/pyqcs}}
\item{Install it via PyPI: \lstinline{pip3 install pyqcs}}
\item{The code is tested automatically on TravisCI.}
\end{itemize}
}
\end{minipage}
\end{frame}
}
@@ -680,4 +703,10 @@
\end{itemize}
\end{frame}
}
{
\begin{frame}{References}
See the bibliography of my bachelor thesis.
\end{frame}
}
\end{document}