removed the pauses for now
This commit is contained in:
parent
d6d300a1b2
commit
c9cc7b914c
|
@ -63,9 +63,9 @@
|
|||
|
||||
\begin{itemize}
|
||||
\item Some (physical) problems are classically hard to solve.
|
||||
\pause
|
||||
%\pause
|
||||
\item The quantum simulator: Mapping a hard problem to quantum hardware that can simulate this specific problem.
|
||||
\pause
|
||||
%\pause
|
||||
\item The (universal) quantum computer: able to simulate any unitary transformation on the system.
|
||||
\end{itemize}
|
||||
|
||||
|
@ -76,9 +76,9 @@
|
|||
\begin{frame}{Quantum Errors and Quantum Error Correction}
|
||||
\begin{itemize}
|
||||
\item Quantum systems at non-zero temperature often have dephasing effects and a finite population lifetime (relaxation).
|
||||
\pause
|
||||
%\pause
|
||||
\item Fault tolerant QC needs a way to correct for those errors.
|
||||
\pause
|
||||
%\pause
|
||||
\item Several strategies exist; one important class of quantum error correction codes are \textbf{stabilizer codes}.
|
||||
\end{itemize}
|
||||
|
||||
|
@ -111,7 +111,7 @@
|
|||
A $n$-qbit system is the tensor product of the single-qbit systems.
|
||||
}
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
%\item{
|
||||
% For $n$ qbits define the integer state $\ket{j}$ as
|
||||
|
||||
|
@ -126,7 +126,7 @@
|
|||
U_i := \left(\bigotimes\limits_{k < i} I\right) \otimes \bar{U} \otimes \left(\bigotimes\limits_{k > i} I\right)
|
||||
\end{equation}
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
For $\bar{U} \in SU(2)$ and qbits $i \neq j$
|
||||
\begin{equation}
|
||||
|
@ -134,7 +134,7 @@
|
|||
\end{equation}
|
||||
is the controlled $\ket{U}$ gate acting on $i$ with control-qbit $j$.
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
}
|
||||
|
@ -150,13 +150,13 @@
|
|||
H := \frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1\end{array}\right)
|
||||
\end{equation}
|
||||
which transforms from the $Z$ to the $X$ basis}
|
||||
\pause
|
||||
%\pause
|
||||
\item{the rotation gate
|
||||
\begin{equation}
|
||||
R_{\phi} := \left(\begin{array}{cc} 1 & 0 \\ 0 & \exp(i\phi)\end{array}\right)
|
||||
\end{equation}
|
||||
that performs a rotation around the $Z$ axis.}
|
||||
\pause
|
||||
%\pause
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
@ -175,7 +175,7 @@
|
|||
The $S$ gate transforms from $X$ to $Y$ basis.
|
||||
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
\textbf{Theorem}
|
||||
{\itshape
|
||||
|
@ -196,7 +196,7 @@
|
|||
\ket{j} = \ket{\mbox{0b}l_1...l_n} = \ket{l_1}_s \otimes ... \otimes \ket{l_n}s
|
||||
\end{equation}
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
For $n$ qbits there exist $2^n$ such states and they form a basis
|
||||
|
||||
|
@ -235,23 +235,23 @@
|
|||
Writing a unitary transformation as a product of the generator gates is unreadable.
|
||||
To fix this problem quantum circuits have been introduced.
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
Qbits are represented by horizontal lines.
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
Gates acting on a qbit are boxes on the lines.
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
Control-qbits are connected to the gate via a vertical line.
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
Circuits are read left to right.
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
Example:
|
||||
\Qcircuit @C=1em @R=.7em {
|
||||
|
@ -273,14 +273,14 @@
|
|||
H = -\sum\limits_{i=1}^{n-1} Z_i Z_{i-1} + g\sum\limits_{i=0}^{n-1} X_i
|
||||
\end{equation}
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
The time evolution of such a system is given by the transfer matrix
|
||||
\begin{equation}
|
||||
T := \exp(-itH) \in SU(2^n)
|
||||
\end{equation}
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
By associating every qbit with one spin (both are two-level systems)
|
||||
one should be able to simulate the behaviour of the spin chain using
|
||||
|
@ -334,7 +334,7 @@
|
|||
is called the Pauli group.\\
|
||||
$P_n := \left\{p_1 \otimes ... \otimes p_n \middle| p_i \in P \right\}$ is called the multilocal Pauli group.
|
||||
}}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
\textbf{Definition}
|
||||
{\itshape
|
||||
|
@ -342,7 +342,7 @@
|
|||
is called the Clifford group
|
||||
}
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
One can show that $C_n$ is generated by $H, S, CZ_{i,j}$.
|
||||
}
|
||||
|
@ -370,7 +370,7 @@
|
|||
\item{
|
||||
The generators are not unique. For instance $C_1$ can be generated using $H, S$ or $\sqrt{-iX}, \sqrt{iZ}$.
|
||||
}
|
||||
\pause
|
||||
%\pause
|
||||
\item{
|
||||
The generators of a group have some kind of independence property.
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user