talk in front of brookhaven
This commit is contained in:
parent
173de67820
commit
c4c5e88b8f
|
@ -22,7 +22,7 @@
|
|||
\setbeamercolor{background canvas}{bg=white!20}
|
||||
|
||||
\title{An Efficient Quantum Computing Simulator using a Graphical Description for Many-Qbit Systems}
|
||||
\subtitle{Simulation in the Stabilizer Formalism}
|
||||
\subtitle{Simulation in the Graph Formalism}
|
||||
\author{Daniel Knüttel}
|
||||
\date{21.02.2020}
|
||||
\institute{Universität Regensburg}
|
||||
|
@ -107,41 +107,45 @@
|
|||
the bath statistically (\textit{Andreas Hackl}).}
|
||||
\end{itemize}
|
||||
}
|
||||
\item{
|
||||
Long Term: Fault tolerant computing.
|
||||
}
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
}
|
||||
|
||||
{
|
||||
\begin{frame}{Quantum Errors and Quantum Error Correction}
|
||||
\begin{itemize}
|
||||
\item Quantum systems at non-zero temperature often have dephasing effects and a finite population lifetime (relaxation).
|
||||
%\pause
|
||||
\item Fault tolerant QC needs a way to correct for those errors.
|
||||
%\pause
|
||||
\item Several strategies exist; one important class of quantum error correction codes are \textbf{stabilizer codes}.
|
||||
\item{Parts of the theoretical description of quantum errors can be used for physical
|
||||
problems (see above).}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
}
|
||||
%{
|
||||
%\begin{frame}{Quantum Errors and Quantum Error Correction}
|
||||
% \begin{itemize}
|
||||
% \item Quantum systems at non-zero temperature often have dephasing effects and a finite population lifetime (relaxation).
|
||||
% %\pause
|
||||
% \item Fault tolerant QC needs a way to correct for those errors.
|
||||
% %\pause
|
||||
% \item Several strategies exist; one important class of quantum error correction codes are \textbf{stabilizer codes}.
|
||||
% \item{Parts of the theoretical description of quantum errors can be used for physical
|
||||
% problems (see above).}
|
||||
% \end{itemize}
|
||||
%\end{frame}
|
||||
%}
|
||||
|
||||
\section{Binary Quantum Computing}
|
||||
|
||||
{
|
||||
\begin{frame}{Qbits and Gates}
|
||||
\begin{itemize}
|
||||
\item{A qbit is a two level quantum mechanical system. The Hilbert space
|
||||
$\mathcal{H}$ is two dimensional and has the basis vectors $\ket{0}, \ket{1}$.}
|
||||
\item{$n$ qbits have the Hilbert space $\mathcal{H}^{\otimes n}$.}
|
||||
\item{Gates on a quantum computers are unitary operators acting on $\mathcal{H}^{\otimes n}$.}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
}
|
||||
%{
|
||||
%\begin{frame}{Qbits and Gates}
|
||||
% \begin{itemize}
|
||||
% \item{A qbit is a two level quantum mechanical system. The Hilbert space
|
||||
% $\mathcal{H}$ is two dimensional and has the basis vectors $\ket{0}, \ket{1}$.}
|
||||
% \item{$n$ qbits have the Hilbert space $\mathcal{H}^{\otimes n}$.}
|
||||
% \item{Gates on a quantum computers are unitary operators acting on $\mathcal{H}^{\otimes n}$.}
|
||||
% \end{itemize}
|
||||
%\end{frame}
|
||||
%}
|
||||
|
||||
{
|
||||
\begin{frame}{Notable Gates on One Qbit}
|
||||
\begin{frame}{One Qbit}
|
||||
\begin{itemize}
|
||||
\item{One qbit has the Hilbert space $\mathcal{H}$ with basis vectors $\ket{0}$, $\ket{1}$.}
|
||||
\item{The Pauli matrices $X, Y, Z$ are gates commonly used.
|
||||
$X$ is also called the $NOT$ gate as it maps $\ket{0}$ to $\ket{1}$ and
|
||||
vice versa.
|
||||
|
@ -157,22 +161,22 @@
|
|||
\end{frame}
|
||||
}
|
||||
|
||||
{
|
||||
\begin{frame}{Notable gates on $n$ Qbits}
|
||||
\begin{itemize}
|
||||
\item{For a unitary $U$ acting on $\mathcal{H}$
|
||||
\begin{equation}
|
||||
U_i := \left(\bigotimes\limits_{l < i} I\right) \otimes U \otimes \left(\bigotimes\limits_{l > i} I\right)
|
||||
\end{equation}
|
||||
is the $U$ gate acting on qbit $i$.}
|
||||
|
||||
\item{For two qbits $i\neq j$ the controlled $X$ gate is
|
||||
\begin{equation}
|
||||
CX_{i,j} = \ket{0}\bra{0}_j \otimes I_i + \ket{1}\bra{1}_j \otimes X_i.
|
||||
\end{equation}}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
}
|
||||
%{
|
||||
%\begin{frame}{Notable gates on $n$ Qbits}
|
||||
% \begin{itemize}
|
||||
% \item{For a unitary $U$ acting on $\mathcal{H}$
|
||||
% \begin{equation}
|
||||
% U_i := \left(\bigotimes\limits_{l < i} I\right) \otimes U \otimes \left(\bigotimes\limits_{l > i} I\right)
|
||||
% \end{equation}
|
||||
% is the $U$ gate acting on qbit $i$.}
|
||||
%
|
||||
% \item{For two qbits $i\neq j$ the controlled $X$ gate is
|
||||
% \begin{equation}
|
||||
% CX_{i,j} = \ket{0}\bra{0}_j \otimes I_i + \ket{1}\bra{1}_j \otimes X_i.
|
||||
% \end{equation}}
|
||||
% \end{itemize}
|
||||
%\end{frame}
|
||||
%}
|
||||
{
|
||||
\begin{frame}{Universal Gates}
|
||||
\begin{itemize}
|
||||
|
@ -180,7 +184,12 @@
|
|||
\item{Similarly to classical computers a universal set of operations is required.}
|
||||
\item{One can show that any unitary acting on $\mathcal{H}^{\otimes n}$
|
||||
can be generated using the $CX$ and universal gates
|
||||
acting on $\mathcal{H}$.}
|
||||
acting on $\mathcal{H}$ with
|
||||
|
||||
\begin{equation}
|
||||
CX_{i,j} = \ket{0}\bra{0}_j \otimes I_i + \ket{1}\bra{1}_j \otimes X_i.
|
||||
\end{equation}
|
||||
}
|
||||
\item{The gates $\{H, R_\phi\}$ are universal on $\mathcal{H}$.}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
@ -190,14 +199,16 @@
|
|||
\begin{frame}{Measurements and Computational Hardness}
|
||||
\begin{itemize}
|
||||
\item{When measuring a qbit $i$ the observable $Z_i$ is measured.}
|
||||
\item{The Hilbert space $\mathcal{H}^{\otimes n}$ has the integer basis
|
||||
\begin{equation}
|
||||
\ket{j} = \ket{\mbox{0b}j_{n-1}...j_1j_0} = \bigotimes\limits_{l=0}^{n-1} \ket{j_l}.
|
||||
\end{equation}
|
||||
}
|
||||
\item{A general state $\ket{\psi}$ has $2^n$ coefficients in this basis.}
|
||||
\item{In general an operation on the state $\ket{\psi}$ will have to update $2^n$ coefficients.
|
||||
Mapping a general state $\ket{\psi}$ to $\ket{\psi'}$ cannot be performed in $\mbox{poly}(n)$ time.}
|
||||
\item{Operations on the $2^n$ dimensional state will have to update $2^n$ complex
|
||||
coefficients. This cannot be performed in $\mbox{poly}(n)$ time.}
|
||||
%\item{The Hilbert space $\mathcal{H}^{\otimes n}$ has the integer basis
|
||||
% \begin{equation}
|
||||
% \ket{j} = \ket{\mbox{0b}j_{n-1}...j_1j_0} = \bigotimes\limits_{l=0}^{n-1} \ket{j_l}.
|
||||
% \end{equation}
|
||||
%}
|
||||
%\item{A general state $\ket{\psi}$ has $2^n$ coefficients in this basis.}
|
||||
%\item{In general an operation on the state $\ket{\psi}$ will have to update $2^n$ coefficients.
|
||||
% Mapping a general state $\ket{\psi}$ to $\ket{\psi'}$ cannot be performed in $\mbox{poly}(n)$ time.}
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
@ -312,71 +323,71 @@
|
|||
%\pause
|
||||
\item{
|
||||
$C_n$ is the normalizer of $P_n$, i.e. it maps $P_n$ to itself.\\
|
||||
One can show that $C_n$ is generated by $H, R_\frac{\pi}{2}, CZ_{i,j}$.
|
||||
$C_n$ is generated by $H, R_\frac{\pi}{2}, CZ_{i,j}$.
|
||||
}
|
||||
\item{One can show that the normalizers of a group such as the Pauli group can be simulated efficiently.}
|
||||
\item{The simulation using $P_n$ is called stabilizer formalism.}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
}
|
||||
{
|
||||
\begin{frame}{Stabilizers and Stabilizer Spaces}
|
||||
\begin{itemize}
|
||||
\item{
|
||||
Choose a finite commuting Abelian subgroup $S$ of $P_n$ with $-I \notin S$.
|
||||
One can show that all elements of $S$ are hermitian.
|
||||
}
|
||||
\item{
|
||||
One says $S = \langle S^{(i)} \rangle_{i=1,...,n}$ is generated by the $S^{(i)}$
|
||||
if every element of $S$ can be expressed as a product of the $S^{(i)}$ and the
|
||||
$S^{(i)}$ are the minimal amount of matrices required for this property.
|
||||
}
|
||||
\item{
|
||||
One can show that for $S = \langle S^{(i)} \rangle_{i=1,...,n}$ the stabilizer space
|
||||
$V_S := \{\ket{\psi} | S^{(i)}\ket{\psi} = \ket{\psi} \forall i\}$
|
||||
has dimension $1$. $\ket{\psi}$ is therefore up to a trivial phase unique.
|
||||
}
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
}
|
||||
|
||||
{
|
||||
\begin{frame}{Some Notable Stabilizer States}
|
||||
\begin{itemize}
|
||||
\item{The state $\ket{\mbox{0b}00}$ is stabilized by
|
||||
$\langle Z_0, Z_1\rangle$.}
|
||||
\item{Applying the Hadamard gate to the first qbit changes the state to
|
||||
$\frac{1}{\sqrt{2}}\left(\ket{\mbox{0b}00} + \ket{\mbox{0b}01}\right)$.
|
||||
This state is stabilized by
|
||||
$\langle H_0 Z_0 H_0^\dagger, Z_1 \rangle = \langle X_0, Z_1 \rangle$.
|
||||
}
|
||||
\item{Applying a $CX_{1, 0}$ gate yields
|
||||
$\frac{1}{\sqrt{2}}\left(\ket{\mbox{0b}00} + \ket{\mbox{0b}11}\right)$
|
||||
the famous EPR/Bell state which is stabilized by
|
||||
$\langle CX_{1, 0} X_0 CX_{1, 0}^\dagger, CX_{1, 0} Z_1 CX_{1, 0}^\dagger \rangle = \langle X_0 X_1, Z_0 Z_1 \rangle$.
|
||||
}
|
||||
\item{When measuring qbit $0$ the resulting state is either $\ket{\mbox{0b}00}$ or $\ket{\mbox{0b}11}$
|
||||
and the stabilizers are either $\langle Z_0, Z_1\rangle$ or $\langle -Z_0, -Z_1\rangle$.}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
}
|
||||
|
||||
{
|
||||
\begin{frame}{Dynamics and Measurements}
|
||||
\begin{itemize}
|
||||
\item{In general a Clifford gate $U \in C_n$ will map a stabilizer state to another stabilizer state.
|
||||
The new state is stabilized by $\langle U S^{(i)} U^\dagger \rangle_i$.}
|
||||
\item{One can show that measurements of Pauli observables are covered by the stabilizer formalism.}
|
||||
\item{When measuring Pauli observable probability amplitudes of $0, 1$ or $\frac{1}{2}$ are
|
||||
possible.}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
}
|
||||
%{
|
||||
%\begin{frame}{Stabilizers and Stabilizer Spaces}
|
||||
% \begin{itemize}
|
||||
% \item{
|
||||
% Choose a finite commuting Abelian subgroup $S$ of $P_n$ with $-I \notin S$.
|
||||
% One can show that all elements of $S$ are hermitian.
|
||||
% }
|
||||
% \item{
|
||||
% One says $S = \langle S^{(i)} \rangle_{i=1,...,n}$ is generated by the $S^{(i)}$
|
||||
% if every element of $S$ can be expressed as a product of the $S^{(i)}$ and the
|
||||
% $S^{(i)}$ are the minimal amount of matrices required for this property.
|
||||
% }
|
||||
% \item{
|
||||
% One can show that for $S = \langle S^{(i)} \rangle_{i=1,...,n}$ the stabilizer space
|
||||
% $V_S := \{\ket{\psi} | S^{(i)}\ket{\psi} = \ket{\psi} \forall i\}$
|
||||
% has dimension $1$. $\ket{\psi}$ is therefore up to a trivial phase unique.
|
||||
% }
|
||||
% \end{itemize}
|
||||
%
|
||||
%\end{frame}
|
||||
%}
|
||||
%
|
||||
%{
|
||||
%\begin{frame}{Some Notable Stabilizer States}
|
||||
% \begin{itemize}
|
||||
% \item{The state $\ket{\mbox{0b}00}$ is stabilized by
|
||||
% $\langle Z_0, Z_1\rangle$.}
|
||||
% \item{Applying the Hadamard gate to the first qbit changes the state to
|
||||
% $\frac{1}{\sqrt{2}}\left(\ket{\mbox{0b}00} + \ket{\mbox{0b}01}\right)$.
|
||||
% This state is stabilized by
|
||||
% $\langle H_0 Z_0 H_0^\dagger, Z_1 \rangle = \langle X_0, Z_1 \rangle$.
|
||||
% }
|
||||
% \item{Applying a $CX_{1, 0}$ gate yields
|
||||
% $\frac{1}{\sqrt{2}}\left(\ket{\mbox{0b}00} + \ket{\mbox{0b}11}\right)$
|
||||
% the famous EPR/Bell state which is stabilized by
|
||||
% $\langle CX_{1, 0} X_0 CX_{1, 0}^\dagger, CX_{1, 0} Z_1 CX_{1, 0}^\dagger \rangle = \langle X_0 X_1, Z_0 Z_1 \rangle$.
|
||||
% }
|
||||
% \item{When measuring qbit $0$ the resulting state is either $\ket{\mbox{0b}00}$ or $\ket{\mbox{0b}11}$
|
||||
% and the stabilizers are either $\langle Z_0, Z_1\rangle$ or $\langle -Z_0, -Z_1\rangle$.}
|
||||
% \end{itemize}
|
||||
%\end{frame}
|
||||
%}
|
||||
%
|
||||
%{
|
||||
%\begin{frame}{Dynamics and Measurements}
|
||||
% \begin{itemize}
|
||||
% \item{In general a Clifford gate $U \in C_n$ will map a stabilizer state to another stabilizer state.
|
||||
% The new state is stabilized by $\langle U S^{(i)} U^\dagger \rangle_i$.}
|
||||
% \item{One can show that measurements of Pauli observables are covered by the stabilizer formalism.}
|
||||
% \item{When measuring Pauli observable probability amplitudes of $0, 1$ or $\frac{1}{2}$ are
|
||||
% possible.}
|
||||
% \end{itemize}
|
||||
%\end{frame}
|
||||
%}
|
||||
|
||||
{
|
||||
\begin{frame}{Graphical States}
|
||||
\begin{itemize}
|
||||
\item{The graphical representation is an optimized way to write
|
||||
the stabilizers.}
|
||||
\item{
|
||||
For a set of vertices $V = \{0, ..., n-1\}$, some edges
|
||||
$E \subset V \otimes V$, and local Clifford operators
|
||||
|
@ -390,7 +401,8 @@
|
|||
where $\ket{+} = H\ket{0} = \frac{1}{\sqrt{2}}(\ket{0} + \ket{1})$.
|
||||
}
|
||||
\item{One can show that all stabilizer states can be brought into this form.}
|
||||
\item{The stabilizers of this state are $K_G^{(i)} = X_i \prod\limits_{\{i,j\} \in E} Z_j$.}
|
||||
\item{For the derivation of the stabilizer and graphical states see my bachelor's thesis.}
|
||||
%\item{The stabilizers of this state are $K_G^{(i)} = X_i \prod\limits_{\{i,j\} \in E} Z_j$.}
|
||||
%\item{The stabilizers associated with $(V, E, O)$ are
|
||||
% \begin{equation}
|
||||
% \left\langle\left(\bigotimes\limits_{j=0}^{n-1} o_j \right) K_G^{(i)} \left(\bigotimes\limits_{j=0}^{n-1} o_j \right)^\dagger\right\rangle_i
|
||||
|
@ -405,12 +417,17 @@
|
|||
\end{frame}
|
||||
}
|
||||
|
||||
%{
|
||||
%\begin{frame}{Graphical States}
|
||||
% \begin{itemize}
|
||||
% \end{itemize}
|
||||
%\end{frame}
|
||||
%}
|
||||
{
|
||||
\begin{frame}{Counting Graphical States}
|
||||
\begin{itemize}
|
||||
\item{Graphical states are finite and do not span a vector space.}
|
||||
\item{There are $24$ local Clifford operators.}
|
||||
\item{The amount of edges in a $n$ qbit state is $n^2 - n$.}
|
||||
\item{For $n$ qbits there exist $24^n(n^2 - n)$ tuples $(V, E, O)$. But many of those states are equivalent.}
|
||||
\item{There are fewer parameters that have to be updated under a quantum operation (see below).}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
}
|
||||
|
||||
{
|
||||
\begin{frame}{Dynamics of Graphical States}
|
||||
|
|
Loading…
Reference in New Issue
Block a user