did some work on the paper

This commit is contained in:
Daniel Knüttel 2019-11-22 17:27:35 +01:00
parent ca479bd596
commit ae718664f9

View File

@ -183,6 +183,8 @@ by the following relation:
\end{equation}
\end{definition}
Where every $o_i$ acts on the $i$-th qbit.
One can show that any stabilizer state can be realized as a graph state (for instance in \cite{schlingenmann2001}).
\subsection{Operations on the Graph State}
@ -219,6 +221,34 @@ than a single qbit gate.
% \ifend
%\end{struktogramm}
\subsubsection{Measurement of a Qbit}
Note that the $Z$ gate is diagonal in the $\{\ket{1}_s,\ket{0}_s\}$ basis with eigen values $1, -1$.
This gives a simple expression for the projector on the $\ket{0}_s$ and $\ket{1}_s$ state of qbit $k$:
\begin{equation}
\tilde{P^{v}_{k}} := \frac{I_k + (-1)^vZ_k}{2}, v \in {0, 1}
\end{equation}
This projector trivially commutes with any non-operand vertex operator yielding for a state
\begin{equation}
\begin{aligned}
\ket{\psi} := \left(\bigotimes\limits_{\{i,j\} \in E} CZ_{i,j}\right) \ket{+} \\
\tilde{P^{v}_{k}} \left(\bigotimes\limits_{i=0}{n-1} o_i\right)\ket{\psi} &=
\left(\bigotimes\limits_{i=0,i \ne k}{n-1} o_i\right) \tilde{P^{v}_{k}} o_k \ket{\psi} \\
&= \left(\bigotimes\limits_{i=0,i \ne k}{n-1} o_i\right) o_ko_k^\dagger \tilde{P^{v}_{k}} o_k \ket{\psi} \\
&= \left(\bigotimes\limits_{i=0,i \ne k}{n-1} o_i\right) o_k = \frac{I_k + (-1)^v o_k^\dagger Z_ko_k}{2} \ket{\psi}
\end{aligned}
\end{equation}
Now $o_k$ stabilizes $P$, as it is an element of $C_L$, meaning that $o_k^\dagger Z_k o_k \in \{-1,1\}\{X_k, Y_k, Z_k\}$
Which gives a new projector on a Pauli matrix: $P_k := o_k^\dagger Z_ko_k$
\subsection{Graph Storage}
One of the gread advantages of simulating in the graph formalism is a great increase