did some work on the paper
This commit is contained in:
parent
ca479bd596
commit
ae718664f9
|
@ -183,6 +183,8 @@ by the following relation:
|
|||
\end{equation}
|
||||
\end{definition}
|
||||
|
||||
Where every $o_i$ acts on the $i$-th qbit.
|
||||
|
||||
One can show that any stabilizer state can be realized as a graph state (for instance in \cite{schlingenmann2001}).
|
||||
|
||||
\subsection{Operations on the Graph State}
|
||||
|
@ -219,6 +221,34 @@ than a single qbit gate.
|
|||
% \ifend
|
||||
%\end{struktogramm}
|
||||
|
||||
|
||||
\subsubsection{Measurement of a Qbit}
|
||||
|
||||
Note that the $Z$ gate is diagonal in the $\{\ket{1}_s,\ket{0}_s\}$ basis with eigen values $1, -1$.
|
||||
This gives a simple expression for the projector on the $\ket{0}_s$ and $\ket{1}_s$ state of qbit $k$:
|
||||
|
||||
\begin{equation}
|
||||
\tilde{P^{v}_{k}} := \frac{I_k + (-1)^vZ_k}{2}, v \in {0, 1}
|
||||
\end{equation}
|
||||
|
||||
This projector trivially commutes with any non-operand vertex operator yielding for a state
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\ket{\psi} := \left(\bigotimes\limits_{\{i,j\} \in E} CZ_{i,j}\right) \ket{+} \\
|
||||
\tilde{P^{v}_{k}} \left(\bigotimes\limits_{i=0}{n-1} o_i\right)\ket{\psi} &=
|
||||
\left(\bigotimes\limits_{i=0,i \ne k}{n-1} o_i\right) \tilde{P^{v}_{k}} o_k \ket{\psi} \\
|
||||
&= \left(\bigotimes\limits_{i=0,i \ne k}{n-1} o_i\right) o_ko_k^\dagger \tilde{P^{v}_{k}} o_k \ket{\psi} \\
|
||||
&= \left(\bigotimes\limits_{i=0,i \ne k}{n-1} o_i\right) o_k = \frac{I_k + (-1)^v o_k^\dagger Z_ko_k}{2} \ket{\psi}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
Now $o_k$ stabilizes $P$, as it is an element of $C_L$, meaning that $o_k^\dagger Z_k o_k \in \{-1,1\}\{X_k, Y_k, Z_k\}$
|
||||
Which gives a new projector on a Pauli matrix: $P_k := o_k^\dagger Z_ko_k$
|
||||
|
||||
|
||||
|
||||
\subsection{Graph Storage}
|
||||
|
||||
One of the gread advantages of simulating in the graph formalism is a great increase
|
||||
|
|
Loading…
Reference in New Issue
Block a user